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Abstract

There has been much recent interest in the development of nonlinear optical

composite materials as they can posses large values of the nonlinear susceptibility. A

nonlinear optical composite material is capable of enhancing the nonlinear response of

its component materials due to the nonuniform electric field distribution between the

constituents. For this reason the effective bulk nonlinear optical susceptibility is not

typically given by the volume weighted average of the individual susceptibilities. It is

the goal of the present work to investigate the enhancement effect of second-order and

third-order nonlinear optical composite materials as well as third-order photonic band

gap materials and also to consider the accuracy of nonlinear effective medium theory.

Layered optical composite materials can enhance the nonlinear susceptibility for

electric fields polarized normal to the plane of the layers. For enhancement to occur,

the dominant nonlinear constituent must posses an optical dielectric constant lower

than that of the other constituent. This is the usual condition for enhancement for all

composite geometries. As a test of consistency of the nonlinear effective medium

theory, predictions were compared against the results of the well accepted formalism

for calculating second-harmonic generation in multilayer materials. In the calculations

performed, the effective medium predictions were in consistent agreement with the

more exact formalism. Also a third-order electrooptic layered composite material was

constructed and the third-order susceptibility was measured for both the composite

material and a homogeneous film of the nonlinear dominant material. The composite

susceptibility was measured to be 3.2 times the susceptibility of the homogeneous

material, in reasonable agreement with the predictions of effective medium theory.
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In a digression from the optical composite materials mentioned above, another

type of two-component material was studied for its ability to enhance the nonlinear

optical response of a given homogeneous material. One-dimensional photonic band

gap structures were analyzed for their ability to enhance the third-order response of

their constituents. It was found that the third-order response of either a high refractive

index or a low refractive index constituent could be enhanced near the photonic band

edge of the band gap material. Typical enhancement factors were in the range of 4-6.

Introduction of a central "defect" nonlinear region into the middle of the photonic band

gap material resulted in an enhancement factor of approximately 30 over an equivalent

length of homogeneous nonlinear material.

Finally the effective third-order nonlinear susceptibility of a Maxwell Garnett

optical composite was calculated for a composite material with a nonlinear host

medium and the spherical inclusions arranged on a simple cubic lattice. This allowed

for a calculation that was accurate for all fill fractions up the close pack limit unlike

previous treatments of such composites that were restricted to dilute fill fractions only.

However there was surprisingly good agreement with the dilute limit results up to

moderately high fill fractions.
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Chapter 1

Introduction

The linear and nonlinear properties of optical composite materials is an

interesting field of study. The effective bulk optical properties can differ significantly

from those of the constituents, especially in the nonlinear case. Optical composite

materials also present the possibility of engineering bulk materials properties, an

example of which is the use of form birefringence in layered composites to achieve

phase matched second harmonic generation.'. The many applications of nonlinear

optical materials has led to intense recent interest in developing better material systems.

Nonlinear optical composite materials offer the possibility of greatly enhanced

nonlinear response over their homogeneous counterparts, therefore there has also been

recent activity into the investigation of these materials for their potential application.

This thesis addresses the characterization and determination of the nonlinear optical

properties of composite optical materials.

The central problem is the determination and measurement of the effective, or

average, bulk optical properties of composite optical materials. In particular we are

interested in the susceptibilities X"), X(' and X . Before discussing the details of

the effective averaging we must first define what we mean by composite. For the

purposes of this thesis we use the following definition: an optical composite material is

a mixture of two or more constituent materials whose individual regions are

characterized by bulk optical quantities (many atoms thick), but much smaller than the

optical wavelength of interest. If the composite is in the form of an inclusion-host type

material, then the grain sizes and spacing are constrained in the same manner. Since

material variations occur on a subwavelength scale, an incident optical wave will

experience an effective average of the constituent materials. Therefore the macroscopic
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fields and constants that appear in Maxwell's equations describing the macroscopic

properties of the composite can be quite different than the fields and constants

appearing on the scale of the material variations. The analysis of the local fields, on the

scale of the material variations, that make up the macroscopic average is not unlike the

problem of local fields at the microscopic, or atomic, scale.

Since the susceptibilities are phenomenological constants reflecting the linear and

nonlinear polarizabilities of the medium, what we seek is the relationship between the

macroscopic, or averaged, polarization and the macroscopic electric field. One of the

earliest such efforts was due to Maxwell Garnett2 who developed the linear effective

medium theory for the geometry that bears his name (see figure 1.2). Since then

effective linear optical properties of other geometries have been analyzed, but exact

analytical expressions can be difficult if not impossible for most geometries. In that

case empirical or semi-empirical analysis can be attempted. The nonlinear

susceptibilities of composite materials are even more difficult to obtain since they are

related to the higher order moments of the material scale electric field distribution.

The usual approach to the problem begins with the consideration of the

mesoscopic field distribution. Then macroscopic quantities are- derived through

suitable averages. Mesoscopic refers to the scale in which the material variations occur

which is between the microscopic (atomic) and macroscopic (wavelength) length

scales. On the mesoscopic scale we describe field quantities using the electrostatic

approximation which implies that the fields can be treated using static analysis since

the distances are much less than an optical wavelength. Mesoscopic field distributions

are strongly influenced by composite geometry, therefore the macroscopic effective

susceptibility is not a simple weighted volume average of the constituent

susceptibilities. In the nonlinear effective medium analysis however, it is these

inhomogeneties that are crucial in providing interesting and useful macroscopic
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nonlinear properties. In other words local field effects play a larger role in the

description of nonlinear optical composites than in the description of linear optical

averages.

1.1 All-dielectric Effective Medium Theory in Linear Optics

Analysis of the linear response of optical composites is aided by the existence of

a set of bounds on the value of the effective medium dielectric constant. First we note

that the linear dielectric constant is obviously bounded by the value of the constituent

materials, but a more restrictive set of bounds is possible. The most well known are

the Weiner3 limits for composites with purely real dielectric constants. The Weiner

limits depend only on the volume fill fraction, f, of the constituent materials and

formally are given by

X f~e; ~ (1.1)

An intuitive explanation of these limits can be attempted by examining the role of

screening in dielectric composites. If a static electric field is incident on the surface of a

dielectric, a screening charge will develop at the surface which is simply the bound

polarization surface charge. The amount of screening charge will depend on the angle

between the surface normal and the incident field which is most conveniently

expressed as the well known boundary conditions for the electric and displacement

fields at the surface. In explicit terms these are that the normal component of the

displacement, D, and the tangential component of the electric field, E, are continuous

at the interface between dielectrics. If the electric field is incident from a region of

lower dielectric constant onto a region of higher dielectric constant, the screening

charge acts to reduce the electric field inside the higher dielectric constant material and
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therefore reduces its contribution to the average of the effective dielectric constant. The

cases of maximum and zero screening are illustrated below in figure 1.1.

Eo bo Eo ao

(a) (b)

Figure 1.1 Limiting cases of screening with (a) no screening and

(b) maximum screening

It is interesting to observe that with no screening we simply have the Weiner limit of

eo# that is the volume weighted average E. In the limit of maximum screening we

have the other Weiner limit. Grains of composite material will have components of

surface normals that are both perpendicular and parallel to the incident field, therefore a

composite's effective medium dielectric constant will lie between these two limits and

will always be less than or equal to the volume weighted average.

There are three well known composite geometries (figure 1.2) whose linear and

to some extent nonlinear optical properties have been studied. Obviously there are an

infinite number of possible geometries but these three are usually the starting point for

consideration of composite materials. The layered composite geometry is unique for

the following three reasons: it is not an isotropic composite like the other two, it is a

composite in one of its dimensions only, and the mesoscopic fields are uniform. Also

apparent is that the layered composite presents the two limiting cases of screening

action described above and it will now be shown that its two principal effective

dielectric constants are given by the Weiner limits. We use the electrostatic boundary
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conditions requiring continuity of tangential E and normal component of D at the

boundary between two dielectric media. Also by the symmetry of the layered

composite we expect the effective medium to behave like a uniaxial crystal with optic

axes perpendicular to the plane of the layers.

Layered Composite: The thickness of each
layer is mesoscopic

Maxwell Garnett Composite: The size and
spacing of inclusions is mesoscopic

Bruggeman Composite. Each material region is
mesoscopic

Figure 1.2 Three types of composite geometries, in each there are

two constituents whose linear and nonlinear optical properties are

generally different.

For electric fields that are normal to the plane of the layers it is seen that the

displacement field will be equal in both layers as implied by the latter boundary

condition stated above. By inspection it is seen that

da db
D=da=db, ea=d, eb= (1.2)

-Oa Eb
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assuming that each of the layers a and b is isotropic and the fields are uniform. In all

that follows we denote mesoscopic quantities in lowercase letters and macroscopic in

uppercase letters. Uniformity of the fields implies that E = faea + fbeb and after

some simple algebra using D = EeffE, it is readily seen that

__ 1
E eff L (1.3)

ff a f fb
E a eb

for electric fields perpendicular to the layers. An equally simple analysis for fields

parallel to the plane of the layers yields

eff = faEa+ fbeb (1.4)

As expected the two principal dielectric constants of a layered composite are equal to

the Weiner limits.

Analysis of almost any other geometry is more difficult due to the mesoscopic

fields being nonuniform. With some simplifying assumptions however, the Maxwell

Gamett geometry can be readily solved. To begin consideration of Maxwell Garnett

effective medium theory we examine the limiting case of dilute inclusion volume fill

fraction. The optical wavelength is considered to be very long in comparison to the

interinclusion distance, therefore we may use electrostatic analysis. In this scenario the

local inhomogenous field surrounding a given inclusion does not extend far enough to

affect neighboring inclusions and around a single inclusion the mesoscopic field

structure can be assumed to be a uniform applied field plus the dipole field added by

the presence of the inclusion. At distances far from any inclusion we have simply the

uniform applied field labeled Eo in figure 1.3. The solution of this electrostatic

problem is performed4 using Laplace's equation and appropriate boundary conditions.

The resulting mesoscopic field solution is used for the macroscopic averaging.



7

Within an inclusion the electric field is uniform and equal to

ei 3+2e hEo (1.5)

which also implies a uniform polarization within the inclusion. Like the metallic

spheres considered by Maxwell Garnett, outside an inclusion the electric field due to

the inclusion is dipolar. This field can be represented by the field of a dipole situated at

the center of the spherical inclusion with dipole moment

Ep h . rEo (1.6)E i + 2E h10

where r. is the inclusion radius. To summarize the noninteracting inclusion model,I

we have a collection of physical dipoles with their fields superimposed onto the

applied field Eo. This mesoscopic field structure used for both linear and nonlinear'

analysis.

S S
Eo

Fig. 1.3 The Maxwell Garnett mesoscopic field structure: far from

the inclusion is incident field Eo but near the inclusion is the dipole

field of the inclusion superimposed onto E0 , h and i denote host

and inclusion respectively

To better enable the analysis, we use the notation of Sipe and Boyd5 in their

treatment of Maxwell Garnett nonlinear optical composites. Using the definition

0 r e host
p'(r) h (1.7)

(Xi - Xh)e(r). r E inclusion
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for the mesoscopic polarization, the linear polarization is restricted to nonzero values

only within the inclusion material. This transformation of variable simplifies the

calculation since the mesoscopic fields are uniform there. Now that the mesoscopic

field structure is established it remains to average the fields and find the constitutive

relation between the macroscopic quantities P' and E. Since the polarization is zero in

the host and uniform in the inclusions, the averaging of the polarization is fairly simple

since we then have P' =fp' where f is the volume fill fraction of the inclusion material.

Note that with our definition of p'(r), inside the inclusions we have

3-h Ei _Eh
p'(r) = 4;r ei + 2Eh Eo 01.

The averaging of the mesoscopic electric field is a little more complicated. First

we observe that since Eo is uniform, it already is a macroscopic field (Eo is often

referred to as the cavity field in most Maxwell Garnett analysis). Averaging the field of

the inclusions is performed by invoking a well known result of electrostatics 6 that

gives the relation

-_ 4_ .p, (1.9)Einclusion - 3•h

for a unit volume enclosing an inclusion. Then the total average field is the sum, or

4•r
E=Eo -- 4-P'. (1.10)

Eo can then be expressed in terms of P' by using (1.8) and the relation P'=fp'.

Performing the algebra leads to the desired constitutive relation. With more

manipulation and using E = 1+ 4rX, the Maxwell Garnett effective medium

expression is obtained,
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Eeff _ E h E i _Eh

hi = ' f e'-f+-: (1.11)
Eeff +2E E +2E

In some derivations of the Maxwell Garnett effective medium relation, and in

most derivations of the Lorentz local field correction in linear dielectrics 7, a fictitious

cavity inside the medium is introduced to enable the calculation of the local field. The

end result is identical, but by using the cavity construct it appears that neighboring

inclusions (or atoms) contribute zero to the local field. Far off inclusions appear to

have an influence that contributes through the surface charge induced on the imaginary

cavity inner wall due to the polarization outside the imaginary sphere. It is physically

unrealistic however that nearby dipoles have no contribution to the local mesoscopic

electric field yet dipoles far away affect the local field at an inclusion or atom. As

Aspnes8 has pointed out, that is in fact an incorrect conclusion and a better

interpretation of the relation between the macroscopic field and the cavity field (Eo)

falls naturally out of the mesoscopic perspective we have used here. The difference

between the two is simply due to the effects of averaging the inclusion dipole fields

which are superimposed onto the applied field.

For higher fill fractions of the inclusions, the assumption of noninteracting

inclusions is untenable. Recall that a uniform incident field at an inclusion induced a

uniform field and polarization inside the inclusion. This crucial assumption may be

preserved to somewhat higher than dilute fill fractions in the following two cases. First

if the inclusions are arranged on a simple cubic lattice, then the lattice sum of the

dipolar inclusion fields is zero at any lattice site.7 Second if the inclusions are

randomly located, then it can be assumed that their net effect on each other's local field

is zero in the average sense, which is the approach used in Sipe and Boyd.5 In most

nondilute Maxwell Garnett composite structures however, satisfactory description may
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require a more sophisticated approach. For all-dielectric composites, the Maxwell

Garnett effective medium dielectric constant is bounded by the relatively restrictive

Weiner limits and as is discussed below, it may therefore remain a good approximation

to higher inclusion fill fractions.

Bruggeman developed the equation bearing his name by assuming that both

constituents were Maxwell-Gamett-type inclusions imbedded in a host effective

medium and that neither material be given preference as the host material. Setting

Eh = Eeff in the Maxwell Garnett expression and adding a term for the other

constituent yields the Bruggeman expression for the effective medium dielectric

constant,

Ea - •Ef E' - Eeff
O~f a eff b eff(.2

a E a + eff + fb Eb +2eeff

The Bruggeman expression is plotted in figure 1.4.

In figure 1.4 we plot the effective medium dielectric constants of the layered

(Weiner limits), Maxwell Garnett, and Bruggeman effective medium expressions as a

function of'fill fraction of constituent a for two component composite (e a=2.25,

Eb= 4 ). Also plotted is the average of the Weiner limits which might be considered a

first approximation for an arbitrary shaped inclusion particle. In all-dielectric

composites the Weiner limits provide fairly tight bounds and the three approximations

for effective media are all reasonably close. Therefore even if the Maxwell Garnett

linear effective medium theory was derived for sparsely distributed inclusions, it

should remain a decent approximation at higher fill fractions as does the Bruggeman

approximation. Metallic composite Weiner limits would not provide such tight
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restrictions and the effective medium approximations also would not be as accurate

over such a range of fill fractions. More discussion on metallics is presented below.

4 I

S3.5

0

~ 3-

"= 2.5

0 0.2 0.4 0.6 0.8 1
Fill Fraction of Constituent a

Figure 1.4 Various all-dielectric effective medium results. The upper
and lower solid curves are the Weiner limits which also represent the two

layered composite results. In ascending order on the plot are average of
the Weiner (long dash), Maxwell Garnett (short dash) and Bruggeman
(solid). In this calculation we have set the two dielectric constants
asE =2.25 and eb =4.

Investigation into composite geometries beyond the three types discussed

continues since there are many interesting possibilities. A Maxwell Garnett theory of

ellipsoidal inclusion particles has been developed for instance, with analytic solution

possible if all the particles have the same shape. Both randomly oriented9-2 and

oriented9'0 geometries have been investigated and there are significant differences

between them. Fractal geometries have also been of recent interest. Probably a
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majority of the research, both theoretical and experimental, done in composite

materials has been directed at metal-dielectric type composites. Results for metallic

composites are easily used for all-dielectric cases by simply making the relevant

dielectric constants purely real however. Since metallic composites have drawn such

great attention, we now briefly discuss some of the features of these metallic systems

1.2 Metallic Linear Optical Composites

Metallic composite effective medium behavior is qualitatively different than the

above all-dielectric results since metals are characterized by complex and sometimes

negative dielectric constants. For example, examination of the Maxwell Gamett

expression for the case of metallic inclusions in a dielectric host indicates a possible

resonance effect if Ei + 2 -h = 0. This was the phenomenon that Maxwell Garnett was

investigating when he developed the theory that bears his name. The Maxwell Garnett

effective medium expression qualitatively describes the absorption peaks in the visible

spectrum that give stained glass its colorful properties. Therefore an interesting new

set of possibilities exists when a composite contains a metal for either one or two of its

constituents. Even though the primary direction of this thesis work is all-dielectric

structures, it is interesting to examine the large body of work devoted to metallic

composites. Formally the theoretical results for dielectrics and metals are

interchangeable by simply replacing the appropriate values of the dielectric constants

and the expressions for the layered, Maxwell Garnett. and Bruggeman models above

retain their validity.

Metallic composites may also be conductive and much consideration has been

given to this property. Of particular interest is the percolation threshold phenomenon

which is a sudden onset of increasing conductivity at a particular volume fill fraction of
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the metal. Physically at the threshold, the metallic constituents are beginning to form

connected networks that allow for a conducting path through the composite. The

various geometries give different predictions regarding this effect with the Maxwell

Garnett model predicting no threshold at all. Therefore even if the Maxwell Garnett

effective medium approximation may give satisfactory results at most fill fractions for

all-dielectric composites, it is inadequate for metallic composites with a high volume

fraction of metal. The Bruggeman equation does however predict a percolation

threshold but it can be inaccurate in regard to predicting the fill fraction at onset.12.13

The Bruggeman effective medium expression can in fact be derived by analyzing the

effective conductivity,14,11 which is not surprising since the difference with a dielectric

is only that the dielectric constant is imaginary.

The interesting resonance effect mentioned above has been has been examined

by a number of investigators beginning with Maxwell Garnett. Interestingly the

Maxwell Garnett equation, converse to the percolation effect, is better than the

Bruggeman model at describing these resonances at nondilute (>5%) fill fractions. For

granular composites in general the Maxwell Garnett equation and its generalizations

appear to be much better than the Bruggeman model as demonstrated by Gittleman and

Abeles' 6 who compared predictions to the data of Cohen et al."° on sputtered

composites of gold and silver in glass hosts. The generalized result for the ellipsoidal

Maxwell Garnett composite in their work is given by

Eeff - Ei h Eh
h =h (1.13)

Leeff + (1 - L)eh Lei +(I L)eh

where L is a shape factor describing the departure from spherical. Sheng"2 also used

the data of Cohen et al. to construct a theory that included both the percolation
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prediction of the Bruggeman model and the resonances of the Maxwell Garnett theory.

He had reasonable agreement with the data on gold and silver composites.

1.3 Nonlinear Effective Medium Theory

Nonlinear optical phenomena in composite materials provide a rich and

interesting range of possibilities. The local field effects that control the linear effective

medium averages are of even greater importance in the consideration of the nonlinear

averages since effective medium nonlinear susceptibilities in general contain more than

one of the local field correction factors that are related to the mesoscopic to

macroscopic field averaging. Also, unlike the linear optical constant averages, effective

nonlinear optical susceptibilities are influenced by inhomogeneties in the mesoscopic

field distribution. This is because the effective nonlinear susceptibilities are in general

proportional to the higher moments of the local electric field distribution. An important

consequence of this is that the effective nonlinear susceptibility is not bounded by the

individual nonlinear susceptibilities of the component materials. This is a departure

from the behavior of the linear averages that are bounded by the Weiner limits. In fact,

no bound on the effective medium nonlinear susceptibility has been presented up to

this time although there are practical, and perhaps theoretical, considerations that

should prevent an infinitely high effective nonlinear susceptibility.

Surprisingly the first investigation of nonlinear composite materials did not

occur until the 1980's with the work of Ricard et al]. 6 who determined the third-order

susceptibility of metal colloids in water. Their result went something as follows, first

the Maxwell Garnett result is taken to lowest order in fill fraction (they used very small

fill fractions of metal particles),
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Eeff =Eh(l+3f3 f). (1.14)

Then a Taylor expansion with respect to a small change in the inclusion dielectric

constant is performed giving

4eff = 3Ehf 3-&i. (1.15)
dri

The change in the inclusion dielectric constant is assumed to be induced by a third-

order nonlinearity, or

3ei = 12zrXý3)lEl0c 2  (1.16)

where Eloc is the field experienced by a single metallic inclusion. Using the Maxwell

Garnett result that the local field at an inclusion is the cavity field in the host, they

arrived at the expression

f( 3s_.h _ 2 3 Eh 12,rXP3 IE12  (1.17)
3seff 2 eh +ei 2Eh -- ei

for the effective change in dielectric constant with incident field strength. Interesting to

note is that the Maxwell Garnett local field correction factor appears to the fourth

power, one higher than the order of the nonlinearity. This is due to a correction of the

linear dipole moments arising from the presence of the nonlinear dipole moments. In

measurements of gold and silver colloids, Ricard et al. found phase conjugate

reflectivities to be several thousand times greater on resonance than off resonance.

Much composite work since Ricard et al. has focused on third-order effects in

metal and semiconductor doped glasses owing mostly to the interesting enhancements

of the nonlinearity at the surface plasmon resonance and to confinement effects in

semiconductors. Usually for such systems, the nonlinearity is assumed to arise

primarily from the inclusion material. Second-order nonlinear optical composites have
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received little attention. This may be due to the difficulty of construction of a

noncentrosymmetric material in the composite geometry.

Two articles, Sipe and Boyd5 and Boyd and Sipe,17 have derived the first

nonlinear correction to the effective medium dielectric constant for certain interactions

in the layered and Maxwell Garnett geometries. They considered constituents with

arbitrary linear and nonlinear susceptibilities and as a consequence were among the

first to consider all-dielectric composites. Also important is the fact that the host

medium, and not the inclusions, was considered the nonlinear constituent in one

calculation of the Maxwell Garnett response. Their results indicate that the general

form for the nonlinear response of a composite optical material (with only one

constituent, material a, having a nonlinear response) may be expressed as

=fa~a gI~a(fa,~a,-~b),(n) . (1.18)

La is the local field correction factor expressing the factor by which the macroscopic

electric field differs from the uniform background mesoscopic, or 'cavity', field in

material a. The condition for this factor to be greater than unity is that the average

mesoscopic field in material a be greater then the average mesoscopic field in material

b (which also makes the average mesoscopic field in material a greater than the

macroscopic field). This in turn will be true if 8a < Eb at the frequency of interest. The

difference between the uniform field in material a and the macroscopic field is

attributable to the mesoscopic fields that arise out of induced polarizations in material

b. For example if the fields produced by the induced polarizations in material b oppose

the cavity field in material a on average, the macroscopic average will be lower than

the cavity field in a. The geometry that presents the maximum value for La is the

layered geometry with polarization perpendicular to the plane of the layers since it
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represents the case of maximum shielding. When there is no shielding (layered

composite with polarization parallel to the plane of the layers) the macroscopic average

is equal to the cavity field, therefore La is bounded by relations that are related to the

Weiner limits.

The factor ga(fa,Ea,eb) is a term that represents the inhomogeneity of the

mesoscopic field distribution. In general, ga will tend to increase for increasingly

inhomogenous field distributions and therefore increase the overall nonlinearity.

Physically this derives from the fact that electric field 'hot spots' can dominate the

nonlinearity of the composite material as the nonlinear polarization, which is

proportional to higher powers of the electric field, may be very large in such regions.

Stroud and Hui 20 derived a relation that defines the cubic nonlinearity in terms of the

fourth moment of the mesoscopic electric field for a composite in which only material

a is nonlinear. It is given by

(3)faZ((ea "e)(ea .ea)) (1.19)Zeft= 4o

where Eo is the macroscopic averaged field. It can be seen that if we express the

mesoscopic fields in material a in terms of the cavity field in material a, then an

expression equivalent to equation (1. 18) would result. That would make ga equal to

the fourth moment of the mesoscopic electric field in material a, divided by the fourth

power of the cavity field in material a.

For the layered composite, ga will equal 1 since all the fields are uniform. In the

Maxwell Garnett geometry, ga will be unity for the fields inside the inclusion but

greater than one for the mesoscopic distribution outside in the host material. ga

probably takes on its greatest significance in composite structures such as fractal
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inclusions in a suitable host medium where the mesoscopic inhomogeneities can be

large. 8'"9 In chapter five of this thesis we investigate the question of whether ga is

different for a Maxwell Garnett composite with the inclusion particles arranged on a

simple cubic lattice as opposed to the randomly placed, non-interacting model. Since

the linear Maxwell Gamett assumptions are preserved very well to relatively high fill

fractions in this situation, the factor La is affected little between the two models.

1.4 Summary

In this chapter we have provided a brief summary of some optical properties of a

few select composite geometries that are considered most often in composite analysis.

The physical interpretation of the crucial role played by dielectric shielding was

discussed, as well as accompanying derivations of the linear effective medium

properties of the layered, Maxwell Garnett, and Bruggeman composite geometries.

This effort to emphasize and explain the physical principals underpinning the linear

optical properties was made because the results are also useful to understanding the

nonlinear properties of optical composite materials. Briefly discussed also was metallic

composite materials. Although not directly addressed in this thesis, metallic

composites have additional interesting properties due to the complex dielectric

constants of metals. Finally we introduced nonlinear optical composite theory to set the

foundation for what follows in this thesis.

In chapters two and three of this thesis, nonlinear effects in layered optical

composites are studied. A direct calculation of second-harmonic generation in a layered

composite material is performed in chapter two. It is done first by using the well

known formalism that accounts for each of the layers individually and then by treating

the entire composite as a monolayer with effective medium properties. Comparison
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between the two predictions provides a useful test of the effective medium

approximation. The third order electrooptic effect in layered composites is studied both

theoretically, and experimentally in chapter 3. We successfully constructed and

characterized a multilayered composite consisting of alternating layers of an organic

polymer-dopant system and rf sputtered BaTiO 3. The measured electrooptic

susceptibility was 3.2 times larger than the measured susceptibility of the dominant

nonlinear constituent. Chapter 4 diverges from standard composite theory for an

investigation of two-component third-order photonic band gap materials. These

structures are interesting for the same reason that we investigate traditional composite

materials. It is demonstrated that the nonlinear response can be significantly enhanced

over the response of a homogeneous film of the nonlinear constituent. Finally in

chapter 5 we calculate the nonlinear response of a Maxwell Garnett composite material

with the inclusions arranged on a simple cubic lattice. This enables determination of

the host mesoscopic fields for nondilute fill fractions all the way to the close packing

limit of such a system. We then determine the nonlinear response for the case of a

nonlinear host material with inclusions possessing only a linear optical response.
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Chapter 2

Comparison Between Effective Medium Theory and Multilayer Exact

Formalism in a Layered Optical Composite

2.1 Introduction

Layered optical composites are a special class of composites. They are

composites in only one dimension, the direction that is perpendicular to the plane of

the layers. Each layer is constructed with a thickness that is much less than an optical

wavelength, therefore it is possible to assign an effective average value for linear and

nonlinear optical constants. Implied from the fact that there are two polarization

dependent dielectric constants is the anisotropic nature of layered composites. The

layers form a uniaxial material with the optic axis perpendicular to the plane of the

layers. It then follows that the nonlinear susceptibilities will be anisotropic and

therefore dependent on the polarization of the incident radiation. The linear effective

averages have been known for some time, the first nonlinear correction to the effective

medium dielectric constant for several types of interactions has been derived recently in

Boyd and Sipe.'

Our group's interest in layered composites stems not only from their interesting

properties but also their relative ease of construction since other types of geometries,

especially ordered geometries, are difficult to construct. Various deposition techniques

for thin films allow for the type of control necessary for composite construction. There

has been success in building Maxwell Garnett types of material, mostly with metallic

inclusions, but they are usually restricted to certain types of host material which is
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most typically glass. Composite multilayers on the other hand offer a wider range of

possibilities.

Ea ( X)"n

b(o))', Zb

Substrate

Figure 2.1 Layered optical composite geometry.

In the next section we establish the mesoscopic to macroscopic field description

in the rigorous and formal setting of Sipe and Boyd2 and Boyd and Sipe' which

enables analysis of most nonlinear interactions in layered composites. We follow the

treatment of Boyd and Sipe for the nonlinear susceptibilities with specialization to the

interaction of second-harmonic generation (SHG). Then in section 2.3 the exact

formalism for SHG in a radiation mode of a layered optical composite is presented,

which allows for direct comparison to the nonlinear effective medium theory. This

direct comparison allows for comparison of nonlinear effective medium theory against

previous well established results.

2.2 Effective Medium Theory in a Layered Composite

For completeness we present the general results in references [1,2] with

elaboration to SHG in layered composites. Notation is maintained as close as possible.

The following mesoscopic electric field description can generally be applied to most

interactions however and the above mentioned references contain examples of

applications to other second and third order nonlinear effects. Exact descriptions for
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specific material systems are sometimes very complicated due to the possible

anisotropic nature of individual constituents.

2.2.1 Mesoscopic and Macroscopic Fields

The formal relationship between a mesoscopic field and its macroscopic

counterpart is defined as2

E(r,o) = 5A(r - r')e(r',co)dr'

P(r, co) = JA(r - r')p(r',co)dr'

where A(r - r') is a smoothly varying, normalized weighting function with range

R << A, mesoscopic quantities are expressed in lowercase letters, and macroscopic in

uppercase. In Ref. [2) it was shown that

_,r 4,r
e(r, o) = E(r, wo) + -P(r, o) - -4-p(r, w)

3 3

+ fJt° (r - r')c(Ir - r'j) p(r',ao)dr' (2.2)

where c(Ir - r'j) is a spherically symmetric cutoff function of range R and to is the

static dipole-dipole coupling tensor

to°(r)={3•• )/r3 l!><7 (2.3)
0 ~Irl < 1

In equation (2.3) I is the identity matrix and P is the unit vector in the direction of r.

We can interpret (2.2) from the mesoscopic perspective as follows. The first two terms

are recognized as the applied, or cavity, field and the second two are the

imhomogenous field generated by the local dipoles. The integral sums up these dipole

contributions over range R but has to leave out the small cavity at location r to avoid

the resulting singularity at the central dipole itself. To correct for the missing cavity we
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add in the field of the small spherical region containing the mesoscopic polarization

p(r). Since over the range of q the mesoscopic polarization can be taken as uniform,

we may use the result of the field of a uniformly polarized sphere for the cavity

correction (third term on the right in (2.2)).

/r r

Figure 2.2 (a) The integral term in equation (2.2) is evaluated in a
spherical region of radius R. (b) The region R is divided into two parts.

Evaluation of the integral term starts with considering the region of integration

indicated by the large radius circle in figure 2.2 (a) above and dividing it into two parts

as shown in figure 2.2 (b). The first part is the electric field due to polarization inside

the layer which contains r, and the second part is the rest of the sphere of integration.

First, consider the contribution from the layer in which r is located. This part of the

integral yields the electric field generated by a plane of uniform polarization minus the

electric field generated by a sphere of uniform polarization. These fields may be readily

calculated from the laws of electrostatics 3 with the field of a uniformly polarized plane

given by

e = -47r2i -p, (2.4)

and that generated by a uniformly polarized sphere is given by

e=-- 4 -p. (2.5)

Therefore the contribution from the layer containing r to the integral is



26

fJto (r- r') -Pa (co)dF' = --4n:. p, (o•) + -4r Pa ((o)) (2.6)
layer 3

Here we have assumed that r is in a layer of material a and we have dropped the r

dependence since we are integrating over range R which is much smaller than an

optical wavelength. The second part of the integral comes from the contributions of the

rest of the sphere of integration. For this we substitute a uniform average polarization,

or the macroscopic P. The electrostatic field generated by this polarization over a

sphere minus a central layer is

f to (r - r'). P(co)dF' = - P(co) + 4ir2. P(o). (2.7)
sphere-layer 3

Substitution of (2.7) and (2.6) into (2.2) yields an expression for the mesoscopic field

in material a,

ea (wo) = E(ow) + 47r. P(ao) - 4 P2£-Pa (Co). (2.8)

The mesocopic field in constituent b is found in an identical fashion. Equation (2.8)

has interesting physical interpretation in connection with equation (2.2). The first two

terms can be thought of as the layered "cavity" field, or the field inside a layer shaped

cavity within a medium with P(co) and E(wo). The last term represents the

contribution from local dipoles in layer a in analogy with (2.2) which uses a spherical

cavity.

It is necessary before performing the nonlinear analysis to generate the results

for linear response of the layered composite. Even though many nonlinear optical

materials have anisotropic crystal structure, to good approximation some systems can

be considered isotropic in the linear susceptibility. For a specific nonlinear material we

consider below, this assumption is common. The linear polarizations are then

expressed as
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Pa(O)) = ZX (w)ea (0O), pb(•) = X ()o)eb(()) (2.9)

with substitution into (2.8) for the linear mesoscopic electric fields, it can be seen that

since the second two terms contain only z components, then

eax(O() = Ex(o), eay(o)) = Ey(o)) (2.10)

which follows from continuity of tangential E, and for the z component

eaz(c) = Ez(o)) + 47rPz (o) - 47rXa(1))eaz(0)) (2.11)

with analogous results for material b. Uniformity of the fields implies that

Pz(O))=faPaz(O))+fbPbz(0J), and substitution into (2.8) for all the polarizations

yields

eaz(0) = eff(a)) Ez((w), ebz(0)) = (eff Ez(w) (2.12)
Ea(CO) Z b b(CO)

where

1eff (0)) (ao) = 1 + 4bj) 7r%((0)) (2.13)

The results are identical to effective medium derivations using simpler electrostatic

arguments.

2.2.2 Second-Harmonic Generation

Now we examine the case where both constituents exhibit second-order

nonlinearities for second-harmonic generation. Again for simplicity we assume

isotropic response in the linear susceptibility. The i'th component of the mesoscopic

polarization in material a may be written as



28

Pai(2 )) = Z(1)(2o0)eai(29) + (2)(09+ o ---> 20))eaj(0))eak(0)) (2.14),ij
jk

with analogous expression for material b. In the evaluation of this expression to an

accuracy of second order in the electric field, it is adequate to take the fields at 1 a) as

given by the linear expressions in equations (2.12) and (2.10). This is because the

secofid term is already expressed to second order in the field. Equivalently we are

taking the undepleted pump, or uncoupled, approximation where the fundamental is

unaffected by the nonlinear interaction. By symmetry of the composite we expect that

the x and y polarizations will be identical in form.

Starting with the x-polarization, with the expression of fields in terms of their

macroscopic counterparts, we have

pax(2co) = Xa()(2(o)Ex(2o)

+ Laj (OJ)La(w)X1(2) + (0 > 2c0)Ej(o))Ek(Co) (2.15)+ •..Laj(9)La(09)axjk(0 9-

jk

where we have defined the local field correction factors

Lax(o)) = Lay(wJ) = Lbx(co) = Lby((w) = 1 (2.16a)

z Seff (O) Eeff L (CO)
Laz=(0) , ,Lb ((0) = (2.16b)

Ea (0)) Eb(0))

and where eax,y(2co) = Ex,y.(2cw) by continuity of tangential electric fields. Which

come directly from the linear composite effective medium expressions (2.10) - (2.13).

A similar expression holds for component b. To obtain expressions for the effective

susceptibility, the expression for the average given by

Px(2co) = faPax(20)) + fbpbx( 2 o)) is used to find

Px(2o)) = [faX(z1)(2o)) + fbX(bl)(2co)]Ex(20)) (2.17)
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+ fa Y Lai(0o)Lak((0)) Z k(o) + o) -4 2Co)Ej (o)Ek (()
jk

+fb I Lbi(O)Lbk(O)Z)bjk(CO o -* 2o))Ej1 o()Ek(o).
jk

The effective second order susceptibility can be written down by inspection of this

equation since ,,(I) = fa(al) (2o) + fbX(bl)(2o)) for fields parallel to the x-y plane.

The z-polarization component follows analogously but with more algebraic

complexity. The full expression for the mesoscopic electric field at 2 (0 is now

eaz(2co) = Ez (2wo) + 4mPz (2wo) - 4 7'Paz (2 co) (2.18)

which leads to the following expression for the mesoscopic polarization

paz (2w)) = Z(1) (2o)[Ez (2co) + 4,rd, (2o) - 4CPaz (2wo)] (2.19)

(2)(o + ) -- 2o))Ej (o)Eko)
+ I Laj (0)) Lak (0)) Xazjk (w+w- w ()k (a))

jk

Solving for the explicit term paz (2co),

paz (20)) = Ea (2 w) [Ez(2 w) + 4 -Pz(2 o) (2.20)
ea(2Io)

"+ E(2w ) YLaj(0)Lak(0))Z( 2 jk(ko+ ('- 20))Ej((0)Ek((0)

and combining with the equivalent expression for the polarization in material b, after

some algebra the following expression is obtained

Eeff L..(2o))-

Pz(2co) = 4 - Ez(2 w) (2.21)

.fae effl_2o)
+ fa J- (2o)) •Laj (o)Lak ()x(2) (o + o -) 2o)Ej (o)Ek (CO)

-a( 2 co) jk azjk
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fbeeff. (2co)

+ b2o _7-Lbj(a))Lbk( O)4,2 jk(O) + w k~ 2 E (aE(0)).£b(2(O) jk

From this result and equation (2.17) we may express the general tensor component of

the second order susceptibility for second-harmonic generation, with an isotropic

linear susceptibility, as
(2) (0 + 0) -- 20) = faLai(20))Laj(o0)Lak(O0)X(2) (2.22)

(2(22)

+fbLbi(2o)Lbj(O))Lbk(O))Xbik•

In nonlinear optics there are n+1 local field correction factors where n is the

order of the nonlinear susceptibility. This fact is also evident when one considers a

homogeneous nonlinear dielectric and includes consideration of local field correction

factors at the atomic level. The reason for the extra factor is that to this level of

approximation of the nonlinear interaction, the first two factors at 10w are

reexpressions of the linear field correcting for the linear-linear dipole interactions that

modify the local field at a given point in the medium. This is the usual linear optical

local field theory. The third factor accounts for nonlinear-linear dipole interactions and

corrects the local field due- to the generated nonlinear dipole moments in the

surrounding medium. This extra local field factor gives local field considerations

enhanced importance in consideration of nonlinear interactions.

It is interesting to investigate the conditions in which the effective susceptibility

in (2.22) is greater than the susceptibility of either of its constituents, if at all possible.

First we restrict attention to the case where only one constituent, material a, has a

nonlinear response since this will probably be more common in application and has a

straightforward physical interpretation. Then the relevant question is when can

faLai( 2 o))Laj(O))Lak(O)) be greater than one. Generally we see from (2.16) that we
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must consider at least one field component at the fundamental or second harmonic to

be polarized in the z direction, and we must have Eeff (2o, cO)>ea(20),0w), or

equivalently Eb( 2 o), o) > Ea( 2o), wo). Figure (2.3) displays the enhancement,

faLaz( 20))Laz(wo)Laz(wO), vs. fill fraction of the linear constituent for some values of

the dielectric constant ratio, and for all polarizations along z. Significant enhancement

is possible under some conditions.

I

Eb/•a =4

3

r'q

Ebtc 2

1

0 0.2 0.4 0.6 0.8 1

Fill Fraction of Component a

Figure 2.3 Enhancement of the layered composite susceptibility for three
values of the dielectric constant ratio of the constituents. Constituent a is
the nonlinear material, constituent b is considered to have only a linear
response.

2.3 Second Harmonic Generation in Multilayer Composites

Using the general results of the previous section we now consider application to

a specific material system. These results will then be compared to the results of an

exact formalism with no effective medium approximation in the next section. In
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particular we want to consider SHG on transmission through a layered composite of a

radiation (nonwaveguiding) mode as shown in figure (2.4).

Incident Fundamental 0o Eref (20))

.0( kref (2 o))

Composite stack "N u(2)

E out (2 co)

Figure 2.4 Geometry of SHG in radiation mode of composite structure.

We wish to simulate the results of a known system of materials with interesting

contemporary relevance. Accordingly we choose the linear indices and nonlinear

susceptibilities to represent the materials selected. The second-order nonlinear

constituent is modeled as a poled polymer4-6 and the other constituent is assumed to be

a linear and isotropic dielectric. Poled polymers are an interesting class of nonlinear

materials as they are centrosymmetric until transformed under the poling process.

Typically the pure polymer host material (exe: poly (methyl methacrylate), poly

(carbonate), or poly (imide)) does not posses a significant X (2) response. But when

an orientable, that is possessing a permanent dipole moment, and high second order

hyperpolarizability dopant is dissolved into the polymer matrix, the resultant guest-

host system can be made to have a significant second order response. Raising the
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polymer to near its glass transition temperature and applying a high dc electric field can

orient the chromophores. The polymer is cooled with the dc field applied and the

chromophores are frozen into a noncentrosymmetric structure. The tensor properties of

this configuration are well known4 and will be used in the composite calculation.

Multilayering with another dielectric can be accomplished via spin coating, sputtering

process, or some other suitable technique. Since we wish to examine the case of

enhanced X(2), the linear dielectric will need to have a linear dielectric constant greater

than that of the poled polymer.

Typically the second rank tensor representing the second-order poled polymer

response is written in a compacted notation utilizing Kleinman symmetry.7 We then

describe the nonlinear polarization for second harmonic generation with the matrix

equation

Ex (w) 2

Ey (w))2

Px (2o) didl d1l2 d13 d14 d15  d16 2

Py(2) =2 d21  d22 d23 d24  d25  d26  2Ey(o•)Ez(o)) (2.23)
_PZ(2o)) I d3I d32 d33 434 435 436, 2 Ex(w) Ez (o))

2 2Ex(o)Ey(w) 2.(

where the tensor dijk = X " The compacted notation dil is a result of X j(2 being

symmetric in its last two indices due to Kleinman symmetry. Consideration of poled

polymer symmetry (-mm), Kleinman symmetry, and poling dynamics4 gives the

following form for the polymer d matrix,

[0 0 0 0 £31 01 d 3

dpoledpolymer = 0 0 d31  0 0 d31 = d33 (2.24)' ~3"

£131 431 433 0 0

The coefficient that is influenced most by composite geometry is d33 as it contains
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three local field factors that are not unity. All other composite effective dil values will

be modified by one local field factor. Since we interested in the case of p-polarized
(2),

incident fields as shown in figure 2.4, the value of Zeft or deff, will be angle

dependent, with the enhancement becoming larger with increasing angle of

propagation inside the composite. That is the result of a larger component of electric

field along the z axis. The s-polarization case is uninteresting since it provides for no

enhancement of the nonlinear susceptibility. Summarizing for the composite system

with poled polymer NLO constituent we have

dcomposite = fa" (2.25)0 0 0 0oa w~~
0 0 0 Laz ()d31 0 0rLaz (2o0)d 31  Laz(2O))d 31  Laz(2Z))Laz(o))2 d3 3  0 0)d3

At this time we point out an important issue concerning SHG in the

configuration of figure 2.4. The quantity of practical interest experimentally and

theoretically is the value of output second harmonic below the composite for a given

incident fundamental. We compare that quantity to the second harmonic from a

homogeneous polymer film of same total thickness as the composite. Initially it might

be expected that the composite sample would yield higher signal by virtue of its higher

susceptibility, but closer examination of input field coupling gives a different

conclusion. Examination of the fields that are actually coupled into the active regions

of the samples shown in figure 2.5 (utilizing the Maxwell boundary conditions) shows

that the electric field strength inside the polymer layers of the composite is not greater

than the field strength coupled into a homogeneous polymer film, assuming that the

dielectric properties of the incident medium is the same in both cases. Only in the case

of including field localization due to propagation effects (photonic band gap structures
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for instance) can higher fields be obtained in the nonlinear regions of a composite.

Since we are considering layer thicknesses to be within the limits of the effective

medium approximation, then that type of localization is not present unless the

composite is part of some larger structure. The resulting output SHG values are

actually smaller for the composite than for the homogeneous nonlinear film case, even

though the effective nonlinear susceptibility is higher.

\ Incident Fundamental

(a) (b)

Figure 2.5 Coupling of the fundamental for a) composite and b)
homogeneous layer of nonlinear constituent reveals that fields are about
the same.

This situation results from the fact that the macroscopic field coupled into the

composite is lower than the homogeneous film. Electromagnetic boundary conditions

prevent the field coupled into the nonlinear regions of the composite from exceeding its

value in other geometries. However this coupling issue is not present in a waveguide

or in the configuration shown in figure 2.6. If the effective medium approximation is

valid, the electric field coupled into the nonlinear layers of the composite material in

fig. 2.6 is higher than the field that would be coupled into a homogenous sample of the

nonlinear material and useable output enhancement may be possible.
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Figure 2.6 Composite coupling of fundamental where enhancement of
fundamental field strength in nonlinear active layers is expected. There
should actually be many layers present in the composite so that the
overall dimensions of the composite is much greater than a wavelength
and the composite presents itself as a bulk medium.

2.3.1 Exact Formalism

It is possible in the geometry of figure 2.4 to obtain an expression for the output

second harmonic fields without utilizing the effective medium approximation. An

explicit expression would be algebraically impractical but the formalism is implicitly

exact and lends itself to ready calculation. We now outline such a method for the

purpose of comparison to nonlinear effective medium results. Convergence of the

EMT prediction to the full multilayer model in the limit of small layer thickness would

provide a test of consistency for the theoretical predictions of the nonlinear effective

medium results as presented in Boyd and Sipe.' The more exact model has been in

existence for some time and has been shown to accurately model experimental results.

The formalism for calculating second-harmonic generation of thin multilayer

structures began with the work of Bloembergen and Pershan8 in 1962. Since then,

there has been some expansion of that work including the important results of

Jerphagnon and Kurtz9 that set the foundation for the Makerl0 fringe measurement of

nonabsorbing isotropic and uniaxial crystals. Recently Herman and Hayden" have
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presented a more complete version of the Maker fringe technique in that they accounted

for some of the approximations used by Jerphagnon and Kurtz. Sipe"2 has presented a

useful new formalism for surface nonlinear optics making use of a Green-function

technique and Hashizume et al."3 combined the Green-function method of Sipe with

the standard transfer matrix method that is useful for many layered structures. Our

own approach resembles the original method of Bloembergen but in cases where there

are possible strong counterpropagating waves, we combine the self-consistent method

of Bloembergen with the Green-function formalism of Sipe, analogous to the method

of Hashizume et al..

Considering the geometry of figure 2.4, we first state the driven wave equation

which the second harmonic field quantities obey. From Maxwell's equations we have

V x V x E(2) -+ e(2co) d2E(2o) = 47r d2 pnl( 2 co)
cVxt2(c2 +t2 (2.26)

and the H field is determined from

V x E(2o) = 1- H(2-) (2.27)

We assume that only one constituent, material a, has a significant nonlinear response

for second-harmonic generation. Setting up general plane wave solutions8 for the

layers a and b we have

Eb(2co) = ebAb exp[i(kb (2co) r - 2cot)] + aA, exp[i(k'(2o)) r - 2ot)]

Ea(2Ca) =aAa exp[i(ka (20o). r - 2ox)] + ^Aexp[i(ka(2o) r - 2(ot)] (2.28)

______(___2 _______ 4ka(Co)(ka(C0)'.o )Iexp[i(2ka(a) r-2)2)]

ka(20) 2 -1I2k, I L -(2( -)12

where
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pnfl= ý( 2 )(CO + Co - 2.o): E(o))E(o))= -pnl (2.29)

and a primed quantity denotes backtraveling waves. The solution for material b and

the first two terms in the solution for material a can be recognized as the homogenous,

or free wave solutions, and the last term in the a field solution is the bound, or driven,

wave solution . For brevity, the backtraveling bound field term has been left off the

above expression for the field in material a, also a cross term proportional to

Ea(CO)Ea(CO) is present in the bound polarization wave but in many circumstances

including our analysis, it is not significant. This cross term is easiest to handle using

the Sipe Green-function formalism when it contributes significantly,"4 we found

however that it did not for the particular all-dielectric composite calculations that we are

considering. Present in these plane wave solutions is the undepleted pump, or

uncoupled wave, approximation that was also present in the effective medium

approximation. For plane waves the H field may be obtained from

H(2o)) = n(2ao)k(2o)) x E(2o)). (2.30)

The self-consistent approach to the multilayer solution requires satisfying

Maxwell's boundary conditions (continuity of Etanand Htan) at each of the layer

boundaries simultaneously. Mathematically we are then considering a system of 2N+2

equations and 2N+2 unknowns where N is the number of individual layers in the

composite. It is possible to solve for all of the unknowns explicitly, as a practical

matter however such an expression would be too cumbersome. Therefore solutions are

generated through a computer algorithm. The solution output Efree( 2 a() is a vector

representing the homogeneous second harmonic amplitudes in all the composite layers.

It is generated from the matrix equation
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AEfree (2(0) = Ebound(2 0() (2.31)

where Ebound(2c0) are the bound wave amplitudes in all the composite layers as given

in equation (2.28) and A is a 2N+2 by 2N+2 matrix representing the two boundary

conditions at each interface. Both the output amplitude below the composite and the

reflected second harmonic above the composite are included in the solution.

2.3.2 Comparison of Exact Formalism and Nonlinear Effective Medium

Theory

Next we compare the predictions of the effective medium approach of Boyd and

Sipe3 to the predictions of the exact formalism. First it is necessary to answer the

question at which layer pair thickness it is valid to assume that effective medium theory

is appropriate. To satisfy this requirement we simply calculate the output for a fixed

total thickness and fill fraction of the multilayer stack and vary the number of layer

pairs. If the assumptions about effective medium theory are correct, there should exist

a layer pair thickness size for which any smaller size will not significantly affect the

output second harmonic value. Figure 2.7 displays such an effect for a fixed angle of

incidence. The onset of a region of layer pair thicknesses in which smaller layer pair

thicknesses have no effect on the output is clearly visible. Only the volume fill

fractions can affect the response in the effective medium limit. In a suitable comparison

between the exact formalism and effective medium theory, the layer thicknesses will be

chosen to be well within these limits of approximation.

Once the layer optical thicknesses are set to suitably small values, the predictions

for the exact and effective medium theories can be compared. To eliminate

consideration of unwanted variables in evaluating a bulk effective medium average like
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Number of Layer Pairs

Figure 2.7 The second harmonic output from a film of fixed total
thickness but variable number of layer pairs. The onset of the effective
medium region of approximation is seen to occur when the number of
layer pairs is about 15. The calculation assumed the following
parameters: total thickness = 1 micron, incident wavelength = 1.06
microns, fill fraction = 0.6 of high index constituent, n,=1.5, nb= 2 .5,
angle of incident radiation = 400.

the susceptibility, the values of the macroscopic electric fields and the internal

propagation angle should be set equal in both cases. Stated differently, we are not

attempting to evaluate the ability of effective medium theory to predict Fresnel

coefficients and propagation angles, but rather how well it describes the bulk average

nonlinear susceptibilities. Since the results here indicated that the use of effective

medium theory constants in describing the coupling of the incident field proved

satisfactory with some divergence at high angles of incidence, the internal fields or

propagation angles were not normalized. Each application of effective medium theory

should independently consider the possible problem of inaccurate prediction of linear

Fresnel coefficients however.
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7Effective Mediiumn Theory
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(a)
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45"
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Figure 2.8 Comparisons between nonlinear effective medium
theory and exact multilayer predictions. The nonlinear constituent is
assumed to have n'= 1.5 and the linear dielectric has n,=2.0. The
surrounding medium has no=1.0 in figure (a) while no=2.0 in
figure (b). There are 15 layer pairs, fill fraction fb=- 5 8 19, total
composite thickness = 270nm, and the incident wavelength is 3.0
microns.

Figure 2.8(a) displays the second harmonic output below the composite pictured

in figure 2.4 as the angle of incidence is varied from 0 to 90 degrees. The curve has a

form that is a typical response for a poled polymer system.' Especially since we are
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utilizing effective medium predictions for the coupling of the fundamental into the

composite, the effective medium result is a satisfactory representation of the composite

response. Figure 2.8(b) plots the response assuming that the incident and output media

have the same refractive index as the high index constituent of the composite. The

significance of this configuration is that there are no waveguide modes and angles of

propagation near 90* inside the composite can be realized. This would be the situation

of maximum nonlinear enhancement as all polarizations are nearly in the z direction.

Again the effective medium approximation proves adequate except for the high angle

divergence. This is because of the error in the propagation angle prediction of effective

medium theory, which has a magnified effect on the output second harmonic value due

to the long propagation lengths and strong interaction in the composite. Normalization

of internal angles of propagation and field magnitudes would greatly reduce the error.

2.4 Conclusions

Nonlinear effective medium theory has been shown to well represent the

response of layered optical composites for second-harmonic generation in the radiation

mode geometry. The predictions of the Boyd and Sipe model for layered composites

was compared with the formal predictions of the well accepted formalism to calculate

the SHG response in thin multilayered structures. Effective medium theory can have

some difficulty in accurately predicting linear propagation properties, mostly at high

angles of propagation relative to the optical surfaces. Bulk property predictions seem

very accurate however.
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Chapter 3

Electrooptics of Layered Composite Materials

3.1 Introduction

The electrooptic response of layered composite materials presents an interesting

problem as it relates to the nonlinear interaction of electrical and optical fields within a

composite structure. In a layered optical composite, each layer is much less than an

optical wavelength, therefore the optical wave will experience an effective average

value for the linear and nonlinear optical constants. The linear effective averages have

been known for some time and the first nonlinear correction to the effective medium

dielectric constant for several types of interactions including the Pockels effect has

been derived in Boyd and Sipe'.

In the present chapter we investigate the quadratic electrooptic effect, also

known as the Kerr effect, of layered optical composites. The theoretical portion of the

following discussion is equally applicable to second-order systems however. We first

derive the electrooptical properties of composite materials, both optical and electrical.

We then describe the construction and measurement of a layered optical composite

whose third-order susceptibility is greater than the susceptibility of either of its
,(3)

constituents. The ,eff of the composite material is measured to be greater than the

X(3) of the dominant nonlinear constituent by a factor of 3.2.

3.2 Theory of Electrooptic Response of Layered Composites
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In order to discuss composite theory we must define what is meant by

mesoscopic and macroscopic fields. Macroscopic fields, which typically are what is

implied in the expression of Maxwell's equations within a material medium, are

averaged fields that vary over a distance scale on the order of the wavelength of the

electrical or electromagnetic field. Mesoscopic fields are quasi-electrostatic fields that

vary over the distance scale of the composite constituent inhomogeneities. This

distance scale is much less than the wavelength of interest but much greater than the

atomic scale. The macroscopic fields are defined as suitable averages of the

mesoscopic fields. A more complete description can be found in Ref. [1]. In the

following discussion lowercase letters denote mesoscopic fields and uppercase letters

denote macroscopic.

The electroooptic effect is a change in the refractive index of a material induced

by the presence of a dc or low frequency ac electric field. The nonlinear polarizations

describing such an effect up to second order in the applied electric field are2

P~~(w~()- y~2 X(2)(wPi(0o + Q) = D(2 •ij (2)o0 - o) + !"n1)Ej(o-°)Ek (9-1)

jk i(3.1)

Pi(C° + KI + 02) = D'()I X(3),i(kl =o(0+ 9l + K2E()E(jE(2

jkl ijkl -

where D(2) and D(') are appropriate degeneracy factors. The first polarization is the

Pockels electrooptic effect, and the second polarization describes the Kerr electrooptic

effect. If the susceptibilities have an imaginary component, then electroabsorption will

also be present. To avoid unnecessary algebra we now confine our attention first to a

general layered composite geometry and then to the specific material systems we wish

to investigate. A composite electrooptic geometry is illustrated in figure 3.1.
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o), ~) ______________________applied(-Q)

Figure 3.1 Electrooptic composite geometry. A low frequency, or dc,
voltage V(92) is applied via electrodes surrounding the composite stack. The
E(92) inside the composite is perpendicular to the layers, always in the z
direction. The optical field enters as a radiation mode from the top.

Restriction of the electrical fields in the z direction reduces the number of tensor

components we must consider in equation (3.1). Since the mesoscopic fields in a

layered composite are uniform in each layer, the applied electric field will also be

uniform in each layer and in the z direction. Therefore the simplification is true

whether we are examining mesoscopic or macroscopic nonlinear polarizations.

We will restrict our attention to cases of isotropic constituent materials for the

electrooptic effect, which is unlike the situation of poled polymers that have oomm

symmetry in the active nonlinear layers. Isotropic constituent layers necessarily implies

that we only consider the third-order Kerr effect for such materials as they will be

centrosymmetric. As discussed in Boyd3 , electrooptic effects in materials are

determined by their effect on the index ellipsoid. The index ellipsoid for an isotropic

material would simply be a sphere, while for the layered composite the semimajor axis

would lie along z, with the semiminor axis along x and y. The composite is uniaxial (x

and y are equivalent directions) so the two semiminor axes are equal. The general

expression for the index ellipsoid is given by
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1 x2+ Y+ +2( yz+ 2( xz+ xy+= 1 . (3.2)

n 1 ') 3 n n 5 6

If we match the x-y-z coordinates to the coordinate system of the composite, then the

last three terms vanish since we are then in the principal coordinate system. It is still

important to consider the last three terms for electrooptic effects since the applied

electric field may effect a change on these terms even though their value is zero in the

absence of the electric field. The presence of such terms would imply a rotation of the

index ellipsoid under the applied field.

In the study of how the index ellipsoid is influenced by an applied electric field,

it is convenient to use the impermeability tensor defined by

Ei = . 7]ijDj, 17ij = (E-l)ij. (3.3)

J

Relating the impermeability tensor to the optical index ellipsoid gives

-7111 ,722, =( q33 1 = 7723 =732

4 
(3.4)

2 7713 = 173 1 2 7712 7121
n 5 (n 6

Now it is assumed that the 7ij can be expressed as a power series in the components

of the applied electric field analogous to the nonlinear polarization in equation (3.1).

The resulting expression is

(0)7j = 7](ijO + I r..k Et ()+ SikEk (9)EI(Q2) +."'" (3.5)
iijkk k- K+ ki k I

where the r and s tensor components are known as the linear and quadratic electrooptic

coefficients respectively. These coefficients are not equivalent to the nonlinear
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susceptibilities and effective medium expressions for these coefficients will then be

different from those of the susceptibilities.

Now we consider the individual layers that were assumed isotropic and examine

the nonlinear properties. As mentioned, the r values will be zero and by third order

symmetry considerations4 with an applied field in the z direction, the nonzero s

components are s11 3 3 , s2 2 3 3 , and s 3 3 3 3 . Also by the symmetry of the x and y

directions it is seen that $2233= s 1 13 3 leaving only two independent s coefficients. In

an isotropic material, an applied electric field breaks isotropic symmetry and the

medium then presents an anisotropic index of refraction to an optical wave.

Equivalently stated, the applied field changes the index ellipsoid from a sphere into an

ellipsoid with semimajor axis along the direction of the field. Inserting such a material

into a layered composite medium and keeping the electric field oriented perpendicular

to the layers preserves this symmetry since the composite also breaks the isotropic

symmetry in the z direction. The composite effective medium expressions therefore

define new macroscopic values for s1133 and $3333 but will not change the form of the

tensor as long as the electric field is along z. Then from equation (2.36) we see that

only 7l7H, 7722, and 7733 will be nonzero for the composite, or that physically the index

ellipsoid will only change in size along its axes and will not rotate inside the

composite. Under such conditions, analysis of the electrooptic effect is simplified to

consideration of index changes along the ellipse axes which in the uniaxial medium of

the composite are the extraordinary and ordinary refractive indices. The changes in the

principal composite indices are described by the readily derived relations
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n1 3 s 3 E2 1 3 2

Ane =-2nS3 3 3 3 Ez () , Ano 133E (0Ž) (3.6)

where the explicit notation ne = ne(w-) has been dropped with the understanding that

indices of refraction are at optical frequencies.

Having established that index changes will only occur along the principal axes,

the effective medium expressions for the layered composite are readily obtained.

Starting with the relation n = - and the well known linear effective medium

expressions

2fela + Abl22 no =fn2a n fb2 (3.7)

where fa and fb are the volume fill fractions of components a and b respectively, and

considering that only one medium, constituent a, has an electrooptic response we have

Afle = ( OJ )fal , Ano = ("n )QlaiH (3.8)

Anla H is evaluated from equation (3.2) above as mesoscopic Ano in material a and

Anal corresponds to mesoscopic Ane. For a composite with two nonlinear

components, identical analysis is performed for the other constituent and its effect is

summed into the total An. In material a the electric field is the mesoscopic field, and

the s coefficients are those for constituent a alone. Evaluation of the derivatives yields

Ane = fa Anal = -fa 2 nes3333aeaz((3)

n.4na1a S13a2z)
Ano = fa(>jJAna/ = -fa -133aeazA

where the lower case eaz(QŽ) emphasizes that the field in a is a mesoscopic field. This
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is not the final effective medium form since we have not expressed the mesoscopic

electric field in terms of its macroscopic counterpart.

The electrical portion of effective medium theory is potentially a difficult subject,

especially with applied dc fields. The question is not whether effective medium theory

is applicable but of how the individual media respond within the composite. When a

low frequency voltage is applied to the composite as shown in figure 3.1, the electrical

response can be modeled by representing the composite stack as a two terminal

network of lumped circuit components. The wavelengths of such waveforms are

extremely long so there is no doubt about the applicability of EMT, but the individual

layer response may be complicated. The composite may then be viewed as a multilayer

leaky capacitive circuit and it can be shown that the composite can be represented as a

two layer element since the electric response is independent of the order in which the

layers are placed.5 The equivalent circuit for the composite is shown in figure 3.2 with

the component values representing all the layers of a particular constituent.

"Ra T a

Rb Cb

Figure 3.2 Equivalent circuit for a composite stack.

To an outside observer the composite then appears as a material of dielectric

constant E = E' + iE" 6 where
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=E" 100 + 2=2" + 2 2 (3.10)
1 +O )T2 ' [.TI12 1 +C T.27

e"' is the "optical" value of e, r refers to the time constant of either the entire stack

(no subscript) or an individual layer, and o) is the angular frequency. Also for k and
E' we have6

1 k(T + 2 -O (3.11)

' fa + fbt'2
Ea Eb

As seen from the expressions above, when the appropriate terms are small, the electric

dielectric constant will average out macroscopically like the optical giving

e'(Q) = E" (Q). The distinction between electrical and optical is artificial as optical is

just the o) -ý - limit. Substitution of measured values for the time constants into the

above expressions demonstrated that the composite low frequency dielectric constant

could well be represented by the "optical" value, E4. A perhaps simpler way to arrive

at this conclusion is to note that the RC time constant of the composite was in the 2-4

millisecond range which implies that capacitive impedances are dominating. Also

determined from measurement was that e"(Q) << e'(92) for the composite stack .

Assuming that E(9) = E' (nl) is valid for the low frequency dielectric constants,

expressions (3.9) may then be completed by expressing the mesoscopic electrical

fields in terms of the macroscopic electric fields. The conversion factor from

mesoscopic to macroscopic fields can be found in Ref. [1], but also can be regarded as

a consequence of continuity of the normal component of the displacement field, D(92),

across the composite layers. The full expression for the composite is then
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Ane = - 2 faneS3333a(_a9 E (0)

(3.12)
4 Ea (,2) ) 2

Ano= -Ifa aS1133aI E 2(92)
2 no (E 2

where the electrical local field factors are identical for both Ane and Ano since the

applied electric field is always in the z direction. E._(9) is equal to e'(Q) from

(3.11). Just as was the case for the optical wave, it is desirable for the electrical

dielectric constant to be lower in the nonlinear constituent (material a in this text). This

has the effect of concentrating voltage drop, and therefore electric field, across the

lower dielectric constant layers. For any material placed between the electrodes,

macroscopic E(QŽ) is given by V(9))/d with d being the thickness of the material.

This invariance of E(92) leads to the fact that the low dielectric constant material within

a composite will experience a higher electric field than an equivalent thickness (same

thickness as composite) layer of homogeneous material since E1.t(Q) > Ea (Q). This is

unlike the coupling of an incident optical wave where the E(wo) coupled into the

structure depends on the optical dielectric constant and prevents such an enhancement

of the fundamental in the low index layer for a situation such as second-harmonic

generation.

The localization of the applied low frequency electric fields in addition to the

optical enhancement factor of

3fa n3"ea , n 3 > n 3 if nb > na (.3
3 3fa e ain~ 0 (3.13)

implies that a radiation mode in a layered composite can experience an enhanced Ane

over that of an equivalent thickness layer of material a. Ano may be either enhanced or

reduced depending on the exact material parameters. We end this section by stating the



54

effective medium expressions for both the quadratic electrooptic coefficients and

susceptibilities for a composite with one nonlinear constituent. The quadratic

electrooptic coefficients are by inspection

S3333eff = [E s3333,
a A12 

(3.14)

S1133efffa~ S((2 J4 S1133a

and the third order susceptibilities are'

(3)3 fa 2[E±(Q) 2'(3)f333 [ :() L a((0)) J ,3 333a

- F133 f _ (-2) I2 (3) (3.15)

eff a ]3

3.3 Construction of Layered Electrooptic Material

The design and construction of layered electrooptic composite materials includes

consideration of many variables. Most important is that the layer pair optical thickness

must fall within the bounds of the effective medium theory approximation. A simple

method to evaluate where those bounds are is to perform a linear optical calculation

and vary the optical thickness. The layer size at which there is no significant change in

the optical properties with decreasing layer size marks the point at which effective

medium theory is appropriate. Also considered in composite design is the appropriate

combination of constituent linear dielectric constants at both the optical and electrical

frequencies. As seen in the development of the theoretical response, we would like to

have the nonlinear constituent posses a lower dielectric constant at both electrical and
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optical frequencies for optimum enhancement. A further consideration is the

compatibility of the constituents, or the compatibility of the deposition processes.

After theoretical evaluation, construction, and testing, of several different

composite systems, rf sputtered barium titanate was selected as the high dielectric

constant constituent and polycarbonate doped with the AF-30 molecule as the low

dielectric constant, nonlinear-dominant material. Barium titanate (BaTiO3) is known

for its large second order response as well as large low frequency dielectric constants.

Crystalline barium titanate has a dielectric constant of 1740"9 at 1 kHz (the

experimental electrical waveform frequency) while polymers such as polycarbonate are

typically around 3. This is potentially a very favorable arrangement as almost all the

applied low frequency electric field would appear across the polycarbonate. The

BaTiO 3 in our sample was an amorphous rf sputtered film however, and the actual

measured value of E(Q) was around 15. This value is large enough to provide an

enhancement effect. At optical frequencies also is the favorable situation where the

crystalline index of BaTiO3 is around 2.4 and polycarbonate is around 1.58 at the

experimental wavelength, so that optical local field factors are also greater than one.

Again the BaTiO3 optical dielectric constant came in lower than crystalline (1.95-2.05)

due to the amorphous and probably porous nature of sputtered films.

AF-30 is an Air Force dopant developed for two photon absorption applications,

however we applied it to our sample as it also displayed a measurable Kerr electrooptic

response. Figure 3.3(a) displays the AF-30 molecule. Polycarbonate (figure 3.3 (b)) is

a common but strong and optically clear polymer which makes it a suitable host

medium. The doping level of the AF-30 in the polycarbonate was 10% weight for all

samples. Influencing material selection was the fact that both the AF-30 dopant and the

polycarbonate host were able to withstand the harsh environment of rf sputtering the
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BaTiO3. The sample temperature was estimated to approach 200 C during the rf sputter

deposition in a MRC model 822 sputter system, which was cycled to avoid even

higher temperatures. All samples, both composites and homogenous films, were

deposited onto indium tin oxide (ITO) coated microscope slides with the ITO acting as

the bottom electrode for the electrooptic sample. The top electrodes were opaque films

of evaporated gold. Total sample configuration is shown in figure 3.5. The composite

was composed of four layer pairs giving a total sample thickness of 800 nm.

\C1J1 210 io 1H2V/

ClOH 210 1OH21  H3 0

(a) (b)
Figure 3.3 (a) The AF-30, or 5-benzothiazol-2-yl-2-(5-benzothiazol-2-yl-
3, 4-didecyloxy(2-thienyl))-3, 4-didecyloxythiophene, and (b) the
polycarbonate monomer. AF- 15 is the AF-30 molecule without the portion
in the dashed triangle.

The electrooptic experiments were performed at a vacuum wavelength of 1.37

microns and simulations using conservative values for the constituent indices indicated

that layer thickness of 100nm would lie in the effective medium realm of

approximation. The maximum allowed layer thickness was 100 nm but also important

is the ratio of constituent layer thickness as that will determine the volume fill fraction,

which is an important variable in effective medium theory. Using our best measured

values for both optical and electrical dielectric constants, figure 3.4 plots the expected

enhancement of the nonlinear susceptibility faLa (w))2 La (jj)2 assuming that material a

(the AF-30/polycarbonate) has the dominant nonlinear response. It can be seen that

maximum expected enhancement occurs when there is about 17% fill fraction of the
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polymer layers which corresponds to a polymer thickness of 20.5 nm, assuming that

the BaTiO 3 thickness is 100 nm. This thickness of a polymer layer for electrooptic

materials is impractical since it will most likely electrically short out with an applied

voltage and film quality would be difficult to maintain. Therefore polymer layers at the

maximum 100 nm thickness were constructed in order to provide maximum electrical

integrity. This implies a fill fraction of 50% which indicates an expected enhancement

factor of about 2.1 for the nonlinear susceptibility.
I I I

3

ý .2

0 I _j
0 0.2 0.4 0.6 0.8 1

Fill Fraction of AF-30/Polycarbonate

Figure 3.4 Enhancement of X3333 versus fill fraction of polycarbonate.
333eff

Typically several separate gold electrodes per glass slide were fabricated since usually

some of the gold-sample material-ITO circuits would short out electrically. With more

testing of different material systems, we feel that better alternatives could be found.

especially for the nonlinear dopant material.
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3.4 Electrooptic Experiment and Results

The electrooptic coefficients of electrooptic films are typically measured using

the Teng and Man'2- reflection technique, a type of ellipsometric measurement

adapted to poled polymer films, or by using interferometric techniques.224 Since the

Teng and Man procedure was specifically designed for the poled polymer second-

order system and thus contains an assumption relating the two independent electrooptic

coefficients for guest-host poled systems, it is not applicable to our Kerr electrooptic

sample. Furthermore, the indium tin oxide electrode has metallic-like behavior at the

wavelength of interest (nrro=0.674+0.2168i) and there are possible multiple reflection

effects in the samples that would make interferometric, Teng and Man, or any other

phase sensitive technique difficult to analyze. Eldering et al.27 and Uchiki and

Kobayashi2- used modulation of transmittance though a Fabry-P~rot cavity to measure

the electrooptic coefficients, which has the advantage of not being a phase sensitive

measurement but requires that the sample have a Fabry-P6rot resonance. Our

composite sample was not designed for such an experiment so we used simple

reflectance data to characterize the electrooptic properties.

Reflectance data is influenced by the same parameters as a phase dependent

signal. These include the sample thickness, index, and absorption variations. The

measurement itself is simpler than the Teng and Man technique but the analysis is more

complicated. Figure 3.5 gives the layout of the experiment and data collected includes

the quadratic electrooptic reflectance modulation at various angles of incidence for both

s and p type polarizations.
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BaTiO3 (100 n •[
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Diode Laser Lockin Amplifier
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Figure 3.5 Experimental arrangement and sample geometry. The sample is
rotated and the detector moved to obtain data from different angles of incidence.
Front surface reflection is elimated since the diode laser has a short coherence
length and there is physical seperation between reflected and transmitted beams.
Index matching fluid is placed between substrate microscope slide and thick
plate (0.5cm).

The signal generated from the sample is due to a modulation of the reflectance of

the film due to the applied low frequency voltage that consists of a dc field

superimposed onto a 1 kHz AC waveform. Thus instead of a driving electric field of

form E(f2 )2 we have E(Q)E(0). This form of applied voltage produced the strongest

and most reliable electrooptic signal. A Kerr electrooptic signal will then be evidenced

by shifts in the 1 signal with changes in the applied dc field analogous to the shift in

the Teng and Man signal described in R6hi et al."3 and as shown in figure 3.6. These

can arise from changes in index (real and imaginary parts) as well as changes in film
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thickness as mentioned. The front surface reflection off the sample substrate was

eliminated for two reasons: first the coherence length of the laser was less than the

thickness of the glass slide the sample was constructed on, therefore front reflection

off that surface would have had to be accounted for with an incoherent superposition.

Second, as the angle of incidence was increased a physical separation of the front

reflection and the modulated beam became apparent. Therefore it was better to

eliminate front surface reflection altogether utilizing a thick (0.5 cm) glass slide

compressed against the glass substrate with index matching fluid in between. Data

generated for the fitting procedure is the modulated s and p polarization reflected

intensities as a function of angle of incidence normalized by the reflected backround

intensity as displayed by a dc voltmeter. Like ellipsometric measurements that obtain

the index of refraction for thin films, a fitting procedure had to be adopted to obtain the

desired experimental quantities (the s coefficients).

Magnitude of I a Signal

Residual linear electrooptic

SigSignal

V(0)

Figure 3.6 An illustrative quadratic electooptic signal with an
applied voltage of form V(O)V(Q). The lŽ signal level detected at
the lockin amplifier is linearly dependent on the applied dc voltage.

The calculated response of the sample was fitted to the experimental data by

varying the appropriate parameters in the computer algorithm that simulated the

quadratic electrooptic response of thin films. The calculation is accomplished by



61

applying homogeneous plane wave solutions to Maxwell's equations for the linear

optical propagation through the sample stack with self-consistent application of

boundary conditions. We were also able to investigate a composite stack with effective

medium theory in the simulated results by simply treating a composite as a monolayer

with effective medium properties. Thus two outputs were generated, one from an exact

formalism and one assuming effective medium theory, for comparison with

experiment. The calculated effective medium result is also in itself a test of effective

medium approximations as it can bedirectly compared to the exact formalism.

As described in Kuzyk and Dirk'0 there are several mechanisms that can give a

Kerr electrooptic response in a doped polymer film. These include electronic,

orientational, orientationally induced second order (like poling), electrode attraction,

electrostriction, trapped charge movement, and heating. From one perspective it does

not matter what the details of the mechanism are since effective medium theory treats

X (3) as a phenomenological constant and applies to any mechanism. With the

experimental fitting procedure however it is important to quantify and separate

thickness changes from variations in the refractive index. Also, electrode attraction is

not a nonlinear optical phenomenon but rather a physical effect of the sample electret.

Thickness variations with applied voltage will derive from the electrode

attraction and electrostrictive interactions. Kuzyk and Dirk'0 and Eldering et al." point

out that doping levels of 10% or less in polymer films do not significantly affect

electrode attraction, electrostriction, trapped charge movement, and heating effects.

Kuzyk and Dirk further found these effects to be insignificant in comparison to the

other third order effects in their doped poly (methyl methacrylate) (PMMA) films.

Uchiki and Kobayashi12 concluded that thickness variations in their doped

polycarbonate films was negligible in their Fabry-Prot type experiment but Eldering et
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al. found that thickness changes were a significant contributor to their signal in a

similar type of experiment in doped PMMA. It is of course possible that these effects

are stronger in PMMA than in polycarbonate. Interestingly D. Morich~re et al.'s

reported that electrostriction was more important than the electronic part of the X(3)

response using the Attenuated Total Reflection technique for PMMA doped with

Disperse Red 1, albeit at only a 3% doping level (weight concentration).

The approach used here is to assume that electrostriction, electrode attraction,

and heating (in the homogenous films) are independent of small doping levels and for

trapped charge effects should be comparable in a similarly doped film. Films of

polycarbonate doped with Disperse Red 1 and polycarbonate doped with AF-15 (see

fig. 3.1) were measured for comparison to the AF-30 doped film. The observed

signal levels in both films were much smaller than the AF-30 films even after

accounting for optical effects. Electrostriction and heating are probably dominated by

the polycarbonate and should have appeared in all samples if prevalent. Electrode

attraction effects also should be nearly identical in all polycarbonate films, and trapped

charge effects should be similar in the AF-30 and AF-15 films as they are similar

molecules and the weight percent is equal in both films (therefore there is actually a

higher volume concentration of the AF-15 dopant). The conclusion was that the

dominant mechanism contributing to the signal in our polycarbonate samples was

refractive index changes in the AF-30 doped films. As will be discussed below, we

did not attempt to discern the Kerr signal mechanisms in BaTiO 3 since its signal was

unusual in nature and was determined to be a minor part of the theoretical composite

signal whether it was dominated by thickness or refractive index variations.

In order to properly fit the composite measurements, the constituent materials

were characterized for both optical and electrical properties. Linear index
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measurements were carried out with an automated ellipsometer and yielded indices of

1.58±0.03 for the doped polymer films and 1.98±0.04 for the sputtered BaTiO 3.

Gold and ITO indices were assumed close to their published values of

ngold=0.4494+8.7245i16 and nrro=0.674+0.2168i17 with the ITO allowed to vary

slightly during the fit procedure since an ellipsometric determination proved unreliable

and ITO films are known to be difficult to characterize, especially at 1.37 pm which is

near the ITO band edge. The available data from Ref. [17] and to some degree the

attempted ellisometric fit indicated that the imaginary part of the ITO refractive index

was near 0.2 1i but there was some discrepancy in the real part. With this uncertainty

the real part of the refractive index was assumed to be in the range 0.674-1.0 as was

apparent from the values in Ref. [17]. On the whole, variations of nrro over this range

do not affect the conclusions of this work qualitatively but have some affect

quantitatively. It was decided to use to the value 0.674 for the real part as this provided

the most conservative numerical results (smallest composite enhancement) in the

simulated responses.

Measurement of the electrical properties were carried out for C = lkHz on a HP

4284A LCR meter. The BaTiO3 dielectric constant was measured at E(Q)=15+1.5

and the AF-30 doped polycarbonate film was found to have e(Q)=2.9+0. 1. Electrical

measurements of the composite at 10 yielded higher than expected values for the

effective dielectric constant. The range of measured values was from 7.5 to 15

depending on which electrode on the sample composite was utilized and the expected

value would be in the range 5-6 as predicted from the optical model. There was a trend

of getting higher dielectric constant values from the larger electrodes on the composite,

or as the area of the measuring electrode decreased the value of the measured constant

also decreased. We currently have no explanation for this unusual behavior and chose
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to use the theoretical (equation 3.1 ) value of the dielectric constant in the simulated

results.

The DC electric field distribution inside the composite material is potentially a

complicated issue that is determined mainly by the conductivities and not the dielectric

constants of the constituents. In the steady state we expect that the dc fields would be

related by

ea(O) = ab(O) (3.16)
eb(O) Ca(0)

where the conductivity is denoted by a. Conductivity properties also are described by

effective medium theory but individual layer conductivity is difficult to determine as

we have to account for nonlinear conductivity, space-charge effects, surface states,

and bulk traps among other issues."8 Also from experience in the construction and

testing of polymer electrets, sample conductivity can be affected by film quality, film

thickness, impurities, and the nature of the metal electrode-polymer interface, or one is

almost always measuring a total sample conductivity and not necessarily a bulk

material conductivity. With these complications in the application of effective medium

theory to the problem of dc conductivities, the value of the static field inside the

composite polymer layers was allowed to vary as a parameter of the fit procedure

within physically reasonable bounds.

The electrooptic measurements were taken and fitting procedure was applied to

the homogeneous films of AF-30/polycarbonate (855 nm) and BaTiO 3 (1.05 pm). As

discussed above it was assumed that index variations were the dominant source of

signal in the AF-30 films while no such assumption was made for the BaTiO 3. The

BaTiO3 signals exhibited some unusual behavior under the action of an applied dc

field, at least unusual in attempting to interpret them with Kerr electrooptic behavior.

Hysteresis was present in most of the signals observed but could be minimized by
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cycling the sample through several changes in the dc field polarity. The s-polarization

and low angle of incidence signals were too low for reliable interpretation so only high

angle of incidence p-polarization data could be analyzed. Two of the three angles that

produced good signals are shown in figure 3.7, the third angle of incidence at 75*

displayed behavior like that at 70* except smaller in magnitude. As can be seen, some

behavior was not Kerr-like in nature. Most likely the static field behavior of BaTiO3 is

complicated by issues that are beyond the scope of this work, therefore it may or may

not be appropriate then to ascribe electrooptic coefficients to the sputtered BaTiO3

utilizing these signals.

Magnitude of lHI Signal (p.V) Magnitude of 1Q Signal (jtV)

480 { 730

725
470

470 -
720 -

460 V(o) v(o)

-30V +30V -20V +20V

Figure 3.7 Observed BaTiO3 signals with applied dc voltage. The 60* (a)
angle of incidence signal appears to have some Kerr-like behavior but the (b)
70* angle of incidence signal does not.

For the sake of providing some boundaries to the analysis of the composite

material however, a calculation was performed assuming a strong quadratic

electrooptic response of the BaTiO 3. Considering the three data points while simply

assigning the magnitude of signal variation at 70* and 750 as due to quadratic

electrooptic effects, a fit was done for the third order electrooptic coefficients. s3333

was calculated to be 10%-50% of that derived for the AF30/polycarbonate depending

on the exact thickness, refractive index, and ratio of s3333 /Is 133. A composite
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response is then modeled using the highest value for the BaTiO3 electrooptic

coefficients, assuming that electrical effective medium theory assumptions at lkHz are

valid and that all of the dc field appears in the BaTiO3 layers (composite response then

dominated by the BaTiO 3). The calculated signal is only 20% of the observed

composite signal at high values for the angle of incidence. Only in the improbable

situation of most all of the ac voltage also appearing across the BaTiO 3 layers do signal

strengths match those observed from the composite. We believe it more reasonable to

attribute a maximum of 15% of the composite signal to the BaTiO3 due to the high

expected polarizability. Assuming that the BaTiO3 signal is due to thickness variations

it is found that the maximum contribution is again near 15%. For the rest of the

analysis it is therefore assumed that the dominant source of composite signal is

refractive index variations of the AF-30/polycarbonate. This conclusion is supported

by measurements made on an AF-15/polycarbonate and BaTiO3 composite of similar

construction to the AF-30 composite. Observed signals were smaller (about 25% of

the AF-30 signals at 65* angle of incidence) and non-Kerr like in nature, it is not

known if there was enhancement of the AF- 15 nonlinearity.

AF-30/polycarbonate s-coefficients were determined by a simultaneous fitting of

both the composite and a homogeneous AF-30/polycarbonate film under the

assumption of composite response dominated by the AF-30/polycarbonate. It was

necessary to use the composite data to some degree due to the paucity of data from the

homogeneous film. As with the BaTiO3 data, low angles of incidence and s-polarized

input generally provided small and unreliable signals, however the homogeneous film

did provide some decent p-polarized signals at high angles of incidence and they were

Kerr-like in nature. The larger composite signals though gave good p-polarization data

at many angles and its distinctive shape was the attribute used as a verification on the
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relative proportions of the four independant homogeneous film coefficients (real and

imaginary s-values). The absolute magnitude of the AF-30/polycarbonate coefficients

were set to match the high angle signal levels in the homogeneous film. The fitted s

coefficients for the AF-30/polycarbonate films were s3333=(2+0. li)xl021 (mNV)2 and

S1 133 =(0.8+0.05i)x10 22 (M/V)2 . These values seem low when compared against

published results for other organic systems as mentioned above, but they served

mostly to calibrate the homogeneous films for comparison to the composite and

internal scaling errors in the derivation would be also included in the composite fit.

The composite data was fitted assuming that the AF-30/polycarbonate was the

dominant nonlinear constituent. As a consequence, the relative proportions of all four

independent electrooptic coefficients were fixed. The ratio s3333eff /S1133 is given by

effective medium values for the model assuming a single effective medium layer. The

only variable in the composite fit is therefore a scaling factorthat determines the overall

nonlinearity. Figure 3.8 displays the composite theoretical curve fit for both exact and

effective medium approximations and experimental data for both the composite and the

homogeneous AF-30/polycarbonate films. Errors in the data arise from signal noise as

well as some spread in separately obtained measurements. The data signal levels have

been scaled so that the ac and dc electric field strengths are identical between samples.

This can be done since all signals scale linearly in both the applied voltages. As an

example, if there is data for an applied dc voltage of 20 volts, the signal for an applied

dc voltage of 10 volts is simply 50% of that. To normalize the electric fields strengths,

we set

Vcomposite (0) VAF-301 polycarbonate (0 ) (3.17)

dcomposite dAF-30 IPiolycarbonate



68

and likewise for the ac field. Setting the internal electric fields strengths equal will

allow for somewhat of a basis for comparison between signal strengths as the shape of

the p-polarization curve for the homogenous film is similar to the composite curve for

the thicknesses of the films measured. The ratio of susceptibilities however cannot be

directly extracted from the signal levels but can only be obtained through the lengthy fit

algorithm that accounts for all of the involved optics. With the thickness of the

homogeneous film close to that of the composite, it can be calculated that a signal

from a composite film with an effective (3) of Za would have a signal strength

smaller than that of the homogeneous AF-30/polycarbonate film. The enhanced signal

from that value indicates that an enhancement is occurring with field localization

presumably playing a major role.

Apart from the data fitting and enhancement phenomenon is the fact that the

effective medium approximation matches the exact prediction very well with some

divergence at higher angles of incidence. This provides a verification of the theoretical

predictions of effective medium theory. The high angle divergence is mostly due to the

error in the propagation angle prediction of effective medium theory at higher angles.
,(3) 3.tmegraethnte,33

The composite fit indicated a X3 3.2 times greater than the o the
333eff*333oth

AF-30/polycarbonate. The simulated response would seem to indicate an electric field

localization inside the AF-30/polycarbonate greater than the expected amount based on

the effective medium prediction of section 3.3. Recall that the predicted enhancement

factor was 2.1, although that was derived from an all-ac applied electric field. Finally

we express the effective medium coefficients and susceptibilities formally as factors of

the AF-30/polycarbonate values.
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Figure 3.8 Data and theoretical curves based on fit parameters for composite and
homogeneous AF-30/polycarbonate films. The electric fields were normalized based
on applying 40 volts ac and dc across the 800 nm composite. Slightly higher voltages
(by ratio of 855/800) would be applied across the homogeneous film since it is thicker.
Unfilled circles are composite p-polarization data, filled squares are composite s-
polarization, and filled diamonds are for the homogeneous AF-30/polycarbonate film
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The relation between X,(3) and the electrooptic coefficient s may be derived by

utilizing the expression n = 1 + 47'Zeff where Xeff = Xj + 6X 3)E(i21)E(022 ) and

the degeneracy factor of 6 arises out of the fact that there are 3 distinct applied fields

including the optical field. An expression for An is then derived, assuming An is due

to nonlinear effects, and set equal to equation (3.6) for a homogeneous film or (3.12)

in the case of a composite to solve for a relation between the two quantities.

3.5 Conclusions

From a simple phenomenological point of view, we know that layer thicknesses

are within the effective medium approximation and so the composite may be

represented as a monolayer with a susceptibility of more than three times that of the

homogenous polymer layers and larger than that of BaTiO3 by some other factor. The

large enhancement explanation lies in the details of electrical effective medium theory

or in the BaTiO3 response. For all-optical interactions, effective medium theory has

been shown" to provide excellent results, so there is little reason to expect anomalies

with the optical portion of the effective medium approximation. The high nonlinearity

may derive from the composite acting to enhance some Kerr mechanisms in ways not

explainable with the current effective medium theory such as the multilayer structure

introducing an abundance of surface states for instance. There may also be some

uncertainty in the measured layer sizes that could actually mean a higher fill fraction of

BaTiO3 than assumed. In any case it is reasonable to assume that much of the

composite response is explained with the formal predictions of effective medium

theory with a more complete and detailed model perhaps obtainable in the future.

Higher enhancements are possible at higher fill fractions of the BaTiO3 in theory.
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Practically, electrooptic materials are utilized mostly in the waveguide configuration.

For our material to be used as such film quality would probably have to improve or

scattering losses would be large. It is very encouraging that the enhancement leads to a

measurable increase in the output modulation of the reflected light. This demonstrates

that composite structures may well find use in the wide variety of applications for

electrooptic materials. These results are complementary to those of Fischer et al. 9 for

degenerate four wave mixing in layered composites and provide further confirmation

of the theoretical predictions of Boyd and Sipe1.
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Chapter 4

Photonic Band Gap Nonlinear Optical Materials

4.1 Introduction

There has been recent interest in the nonlinear optical properties of composite

material systems composed of two or more constituent materials. Systems where the

scale of the material variations is much less than the optical wavelength, so that the

electrostatic field approximation may be applied, are generally termed composite

optical materials. We studied such systems in chapters 1,2,3 and 5 of this thesis. If the

scale of the material variations is increased to the extent that there are significant optical

phase shifts over the material inhomogeneities, there is another interesting class of

both linear and nonlinear optical phenomena that can occur.

A photonic band gap (PBG) structure is a material system that prohibits the

propagation of electromagnetic radiation over a range of wavevectors. Incident

radiation at these wavevectors will be almost entirely reflected because of the

interference properties of radiation within the structure. PBG structures can be

constructed in one, two, and three dimensions. Here we consider only the one-

dimensional case as it is simplest to examine and construct yet still is potentially

useful. The principles involved in one dimensional structures can be extended to

higher dimensions however.

The properties of a PBG material can be engineered by selecting proper materials

for the constituents and by altering the mechanical structure. A widely analyzed one

dimensional structure is a periodic multilayer of two materials possessing different
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linear optical properties and whose optical layer thicknesses are near a quarter-

wavelength. Quarter-wavelength structures can be used for high or low reflection

dielectric coatings [1]. Interesting nonlinear effects can occur in these PBG structures

as will be discussed below, while others have studied spontaneous emission rates [2-

5] and enhanced gain in a PBG laser [6]. Higher dimensional arrays of spheres or

cylinders have been shown to have PBG behavior [2,7,8].

Enhanced nonlinear properties of periodic dielectric structures were predicted as

early as 1970 by Bloembergen and Sievers [9], and later in Ref. [10], who introduced

the idea of harmonic phase matching by using the optical properties of multilayers.

Second-harmonic generation (SHG) has been investigated by a number of authors in

various types of multilayer structures. Enhancement of the reflected second harmonic

was observed experimentally in a 17-layer-pair structure [11] where the fundamental

was tuned to the middle of the PBG stop band providing for strong

counterpropagating beams. Enhanced SHG using a defect in an otherwise periodic

structure has been investigated theoretically and experimentally [12-13], and was also

experimentally demonstrated in a vertical cavity geometry of GaAs/AlAs multilayers

combined with a SiO/TiO 2 distributed Bragg Reflector [14]. These enhancement

schemes rely on a resonant cavity and our own calculations show that similar

enhancement can be achieved utilizing simple partially transmitting metallic layers

surrounding a single resonant layer in a Fabry-P6rot mode as suggested in [15]. The

drawback of such an arrangement is the tendency of the metal layers to ablate with a

strong incident fundamental. Enhancement of SHG in fiber Bragg gratings was also

the subject of recent work [16].

Enhanced SHG in a one dimensional PBG structure without accompanying

cavity modes was demonstrated numerically for large-index modulated structures with

a pulsed incident fundamental [17] and theoretically for weakly periodic media using
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multiple-scales perturbation [18]. These authors report enhancements of 2-3 orders of

magnitude in power levels of the generated second-harmonic, over an equivalent

length of phase-matched bulk material, near the photonic band edge of the

fundamental. These results provide strong motivation for further investigation and

application of such structures. Three reasons for the strong enhancement are described

in the above two references. First the field amplitudes are enhanced due to resonance

effects, also the transmission factor is large so that most of the fundamental energy is

transmitted (also in [17] the second harmonic is tuned near the second-order band edge

), and last the group velocity at the band edge is small so the fundamental field spends

more time inside the structure which provides for greater conversion efficiency.

Third-order processes have also gained attention in PBG type materials with

investigations into gap-soliton propagation and optical switching [19-29]. An

interesting application involving a X (3) process was the nonlinear optical diode in Ref.

[30,31] where optical transmission was dependent on the direction of propagation.

Recently three different one-dimensional photonic band gap structures were

investigated for their optical limiting abilities [32], and in their investigation of a

quarter-wavelength type structure, the authors numerically found good broadband

limiting properties of a 63 layer structure with modest linear index modulation but

nonlinear coefficients of equal value but opposite sign in the adjacent layers. The

limiting process was accomplished through strong reflectivity at high incident

intensities.

In the present article we numerically further investigate the nonlinear optical

properties of PBG structures with an emphasis on the question of how the nonlinear

response compares to the bulk response of the nonlinear constituent. Unlike references

[17,32] we will consider systems where only one of the materials possesses the
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dominant nonlinear response. Also we will concentrate on deep index modulations,

with relatively weak nonlinearities, where properties such as reflection and

transmission are relatively unaffected by the nonlinear interactions occurring inside the

structure, unlike Ref. [32].

4.2 Linear Optical Properties

The outstanding feature of linear optical propagation in PBG structures was

mentioned above: There exists a range of wavevectors for which incident

electromagnetic radiation will not propagate inside the PBG material, which is the band

gap region. The range of frequencies over which this occurs and the strength of the

reflectivity will depend on the details of the structure. For one-dimensional periodic

dielectric materials these will be the values of the layer indices, the thicknesses of the

layers and the number of layer pairs that are in the structure. Generally with more

layers present and greater index differentials between layers, the stronger will be the

band gap effects. We consider the dielectric stack shown in figure 3.1, and examine

the case for 10 periods and purely real dielectric constants of ea(o0)= 2 .2 5 and

eb(Og)=4. The resulting transmission properties are plotted in figure 3.2 for fixed

layer pair thickness and as a function of incident vacuum optical wave number (no

dispersion). It can be clearly seen that there is a band of incident wavelengths for

which the transmission is very low while outside the band the transmission is high and

is even unity for certain wavelengths. The band edge is also indicated as this will have

special significance in the nonlinear investigations to follow.
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Figure 4.1 Geometry of a one-dimensional PBG structure.

Figure 4.2 would be of identical form if we plotted transmission for fixed

incident wavelength and variable layer pair optical thickness. This will be the variable

that will be considered in the following sections. The band edge and band gap will

retain their meaning but occur at certain layer thicknesses instead of particular incident

wavelengths. In fact if both constituents are kept near their quarter-wave thicknesses,

then the band gap center position can be defined as the layer thicknesses where

2nada +nbdb] = 1 (4.1)11 2

The band edge region is an interesting region in the study of both linear and

nonlinear optics. As discussed in Ref. [5] the spontaneous dipole emission rate at this

point is greatly enhanced due to a high electromagnetic density of states and

transmittance of near unity. Alternatively spontaneous emission is suppressed inside

the band gap region. It might be guessed that the driven dipole emission rate also will

be enhanced as in the case of second-harmonic generation as shown in Ref. [17]. Now

the question of whether third-order degenerate four wave mixing (DFWM) processes

can be enhanced is addressed.
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Figure 4.2 Calculated transmittance curve for a PBG structure. The

surrounding medium is air, n= 1.5, da=500 nm, ný= 2 , db= 37 5 nm, where d

is the layer thickness and there are 10 layer pairs. The band gap is the region

of low transmittance and the band edge is the peak of high transmittance on

either side of the band gap.

4.3 The Intensity Dependent Refractive Index in PBG Structures

4.3.1 Method of Calculation

We consider plane waves of linear polarization propagating in the direction

perpendicular to the plane of the layers in the multilayered PBG structure. The

structures considered are composed of N layer pairs with only one of the constituents

having a third-order Kerr optical nonlinearity. Initially we consider the material with

only the linear response as constituent a and the material with the third order

nonlinearity is denoted constituent b. The refracti-ve index for the b layers is given by
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nb = nbo + 2fi2 IE(o))I2  (4.2)

where F2 is the nonlinear refractive index. Initially the zeroth order field magnitudes

throughout the structure are calculated using the incident field magnitude and assuming

no nonlinearities present. Also we will suppress the explicit o) notation as it is

understood that all field quantities are oscillating at the same optical frequency.

The field solutions are arrived at by requiring the electromagnetic boundary

conditions of continuity of the tangential components of E and H, with E and H plane

wave solutions to Maxwell's equations in each layer, be satisfied simultaneously at

each of the 2N+1 boundaries. Incident E and H fields are considered to have a fixed

amplitude. The unknown H fields are determined from the E fields using the plane

wave relation

H1= nk x E. (4.3)

For the zeroth order solution this leads to the matrix equation

AF=FO (4.4)

where A is a (4N+2) X (4N+2) matrix representing the two boundary conditions at

each interface, F is a vector representing all the unknown electric field amplitudes

including the back traveling amplitudes (2 per 2N layers plus reflected and transmitted,

4N+2 in all), and Fo is the vector that represents the known input amplitudes which

for this case is just the incident E and H fields. This approach is equivalent to the

transfer matrix technique and details may be found elsewhere [1].

Field amplitudes from the zeroth order solution are used to calculate the first

order correction to the refractive indices in the nonlinear layers. Considering the field

in layer j in more detail we write
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Eoj = (Eojekz e-ik (4.5)

with prime denoting backtraveling wave quantities. The scalar amplitudes are those at

the top of layer j and the exponentials describe the spatial variation within the layer.

When proper account is taken of the spatial dependencies of all the terms in the full

expression for jEoj 12, it is noted that only the terms which contain the same spatial

dependence of the moving wave should be retained [33]. Therefore for the forward

moving wave we have

n/j = 0+ 2i 2 ( j1 2 + 2Ej 1j2) (4.6)

and for the backtravelling wave

n'b = nbo + 22 (21EoJ2 + j1I2 ) (4.7)

as the expressions for the refractive indices. The differing indices for the two waves

arises out of the unequal strengths of self and cross phase modulation. Previous work

[32] seems not to have maintained the distinction. Also we use the slowly varying

amplitude approximation as we are not necessarily interested in the strong nonlinear

limit. Once the new nbj and n' are calculated, another self-consistent solution is

achieved by a second iteration of (4.4) using the new values of the layer indices

separately for the forward and backtravelling waves. This first order solution for the

fields is usually accurate enough in the weakly nonlinear limit (either weak field or

weak n,) to be used as a representation for the nonlinear material response, which was

the case in Ref. [32]. In some situations however we may gain accuracy by continuing

the iteration process until a convergence to within specified limits is achieved. This can

be noticeable at higher field strengths or nonlinearities. At higher field strengths or

nonlinearities, the solution begins an oscillatory behavior with the number of



82

iterations, that is it does not converge to a single solution. At lower nonlinear

interaction levels the solution asymptotically converges to a steady value. When there

is asymptotic behavior in the solution, then it is assumed that the answer provided for

the nonlinear response is satisfactory while oscillatory solutions are avoided. The

oscillatory solution may indicate an underlying dynamical instability, but we have not

yet verified that hypothesis.

4.3.2 Non-dissipitive PBG Structures

By using the procedure described above, the field magnitudes in all layers

including the exiting field can be determined. The algorithm provides amplitudes and

phases for all fields and allows for consideration of the nonlinear phase shift on

passage of the incident wave through a nonlinear medium. By comparing the nonlinear

phase shift between PBG structures and homogenous media, the relative effective

nonlinearity of the PBG can be determined. Of particular interest is whether the

nonlinear phase shift is larger on passage through a PBG material over a homogenous

film of equivalent total thickness.

All calculations are performed assuming a fixed incident wavelength of 1.06 /1 m

and all layers are assumed to be lossless dielectrics. The surrounding medium has an

index of 1.0 and initially the indices of the two constituents are set at na=1.5 and

nb=2.0 with material b being the Kerr active medium. There are 10 layer pairs and as a

first example the thickness of material a (the low index linear medium) will be varied

as the independent variable. The index in the nonlinear active layer is described as
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bj = nbo + X j1j2 + 2fEj12 ) (4.9)

n'i bo + P3(2 jE01 + IE~~j12)

where P3= lx10-6. The value of P3 is not as important as its product with the field

modulus squared, which had to be kept at values low enough to ensure proper solution

convergence. Since the purpose of the present analysis is to compare PBG materials

with homogeneous layer response, the incident field magnitude was simply set to

unity.

Figure 4.3 displays three curves; the nonlinear phase shift through the PBG

structure, the nonlinear phase shift through a homogenous film of material b of

equivalent total thickness, and a scaled plot of the transmittance to qualitatively display

where the band edge and band gap are located. As might be inferred from the results of

Ref. [17], there is an enhancement of the nonlinear phase shift at the band edge of the

PBG material over the response of the homogenous layer. Since forward DFWM is an

automatically phase matched process, some features present in harmonic generation do

not apply. Along with phase matching, there is no 'extra' enhancement by tuning the

harmonic to a higher order band edge, therefore the maximum achievable enhancement

with DFWM is probably smaller. Certainly the high transmittance and the resonantly

enhanced fields inside the high index layers are contributing to the enhancement.

Further investigation shows that the size of the enhancement effect increases

with increasing number of layer pairs and with depth of the index differential. The

relative thicknesses of the individual layers can vary considerably around the quarter-

wave thickness and still provide band gap effects. This latitude in PBG design can

provide for better enhancements in PBG structures. The optimum enhancement of the

nonlinear phase shift. in the ten layer pair structure described above, occurred when
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the low index layer was approximately 65% of its quarter-wave thickness and the

nonlinear high index layer was approximately 110% of its quarter-wave thickness.

5dI
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Figure 4.3 Nonlinear phase shift produced by PBG structure as
compared to that of a homogenous film of the nonlinear constituent with
the same total thickness as the PBG structure. The dashed line is a plot of
the transmittance so that the location of the band edge is clearly visible.
The thickness of the high index nonlinear component is set at the quarter-
wave thickness and the low index layer thickness is allowed to vary in the

PBG structure.

The next example (figure 4.4) considers the alternative situation when the

nonlinear constituent is the low index dielectric layer. Now the enhancement occurs at

the opposite band edge and optimization provides for a greater enhancement. With the

high index passive layer at 85% of its quarter-wave thickness and the low index

nonlinear layer at 140% of the quarter-wave thickness, enhancement by a factor of
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approximately 6 is seen while a maximum enhancement factor of about 4 was

observed when the nonlinear constituent was the high index layer.
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Figure 4.4 PBG nonlinear phase shift enhancement with the low

index constituent as the nonlinear material, optimized for maximum

enhancement. The dotted line is the transmittance. The thickness of the

high index constituent is set at 85% of its quarter-wave thickness while
the low index layer thickness is allowed to vary for the PBG structure.

As in fig. 4.3, the homogeneous film thickness is equal to the total

thickness of the PBG structure.

It is clear that PBG structures can provide for enhancements in the nonlinear

phase shift in a manner similar to the reported enhancement in second-harmonic

generation. This may have been an implicit result of Ref. [17,21-24,28,29,32], direct

analysis was not done however as those articles were directed at other issues
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surrounding PBG materials. The optimization may not be complete and further

investigation may provide for better performance.

4.3.3 Nonlinear Absorption in PBG Structures

Band edge enhancements in lossless dielectric structures can be large and

potentially useful. Alternatively there has been interest in nonlinear absorbing

materials, especially in the application of optical limiting. We would expect that since

nonlinear absorption is described by an imaginary Z , or n2, there is reason to

expect similar enhancement of the nonlinear absorption. Two photon absorption

materials hold promise as a means for optical limiting and are modeled as a positive

imaginary contribution to the nonlinear refractive index. The action of a two photon

absorber is then to provide an intensity dependent absorption coefficient that increases

with intensity. We now investigate if a PBG-type material can also enhance the

intensity dependent absorption.

The nonlinear layers (low index layers) have indices represented by the equation

naj = na° + y(lEOjl2 + 21E 1j12 ) (4.9)

n = no0 + y(2 Eoj12 IEoj12 )

where y' is a complex number, the imaginary part of which describes nonlinear

absorption. In order to avoid the possibility that the real part of y (nonlinear index)

could affect the magnitude of the output field, it is set to zero in order to isolate the

effects of nonlinear absorption. Calculations are performed as before with several

iterations done in order to ensure convergence of the solution. In this case however it

will be the magnitude of the output field and not the phase that is of interest. The linear

indices of the constituent layers are assumed to be purely real, possibly modeling a
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nonresonant nonlinearity, and set at n =1.5 and nb= 2.0 and again there are 10 layer

pairs. As expected (fig. 4.5), there is a band edge enhancement of the nonlinear

absorption. The enhancement factor is about the same as in the nonlinear phase shift

example.

2.5 I
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-- PBG Structure
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0
2.4 2.8 3.2 3.6 4

Total Thickness of PBG Structure or Homogeneous Film (microns)

Figure 4.5 The nonlinear absorption plotted here is the change in the
transmittance due to the nonlinear absorption in the sample. The low index
layer is the nonlinear constituent and the high index layer thickness is held
constant at 85% of its quarter-wave thickness in the PBG structure.
Thickness of the homogeneous layer is as described in the previous two
figures.

4.3.4 PBG Structures With a Central Phase Slip

There have been previous investigations into PBG structures containing a

central region of thickness different from that of the other layers [I 1-13, 28. 29] with

reported enhancements of second-harmonic generation in particular [11-13]. It is
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interesting to ask how the calculation we have performed above is affected by the

introduction of a central nonlinear active layer that is of different thickness than the

other nonlinear layers. For consideration we take again the nonlinear constituent to be

the lower refractive index layer and introduce a 0.5 micron low index nonlinear active

central layer surrounded on either side by 5 layer pairs of PBG-type material. The high

index layer thickness was set at 85% of its quarter-wave thickness and as can be seen

from figure 4.6, maximum enhancement occurs when the low index nonlinear material

is at approximately 120% of its quarter-wave thickness. Also apparent is that the

magnitude of the enhancement has increased to a factor of about 30 over an equivalent

thickness homogeneous layer of material a. The largest enhancement occurs at the new

propagation mode introduced into the band gap. The enhancement here is analogous to

the enhanced SHG reported in Ref. [12-13] and related to the results in Ref. [29,30].

Note that there is still an enhancement at the right band edge.
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Figure 4.6 Response of a PBG structure with a central nonlinear layer.

The dashed line is the transmittance. In the PBG material surrounding the

central active region, the high index layers were held fixed at 85% of their

quarter-wave thickness and the low index nonlinear layers were allowed

to vary in thickness.
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It appears that if an attempt is made to provide for maximum possible

enhancement over a PBG-type structures' homogeneous counterpart, the best

situations may not be limited to strictly periodic materials. The optimization problem

here is more complex since there are more degrees of freedom in the design.

4.4 Conclusions

Photonic band gap optical materials are potentially useful materials for the

development of material systems with enhanced nonlinear response. We have

numerically demonstrated a considerable enhancement in the nonlinear refractive index

at the photonic band edge over equivalent homogeneous materials. Band edge

enhancements have also been shown to exist for second-harmonic generation [ 17,18].

Greater enhancements in the third-order nonlinearity seem possible in PBG structures

with a central phase slip, or defect mode. Our results indicate a factor of 30

enhancement, with no attempt to optimize all of the physical parameters involved, in

such a structure. It seems likely that greater application for theses structures will be

found in future work.
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Chapter 5

Nonlinear Optical Response of a Dense Maxwell Garnett Optical

Composite Material

5.1 Introduction

Composite optical materials have recently been an area of intense research

interest'' because of the promise that these materials hold for displaying desireable

nonlinear optical properties. Typically a composite material is comprised of two or

more component materials which are mixed together on a mesoscopic distance scale,

that is, a distance scale which is much larger than a typical atomic dimension but much

smaller than an optical wavelength. The propagation of light through such a material

can then be described at a macroscopic level by effective values of the linear refractive

index and the nonlinear susceptibilities which are obtained by performing suitable

volume averages. Interest in composite materials stems in part from the fact that the

effective nonlinear susceptibility of a judiciously constructed composite material can

exceed those of its constituent materials, as has been demonstrated both theoretically69

and experimentally.'o

One of the earliest investigations into optical composites was by Maxwell

Garnett' who developed a linear effective medium theory to explain the behavior of

metal-doped glasses. His theory was successful in at least qualitatively explaining the

surface plasmon resonance phenomenon associated with such composites. The
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Maxwell Garnett Geometry is shown in figure 5.1. Nonlinear work in Maxwell

Garnett composites did not begin until the 1980's with the work of Ricard et al.2 who

determined the X(3) of metal colloids in water. Others3-8 since then have also

presented work regarding Maxwell Garnett composites. So far most effort has focused

on metallic or semiconductor inclusion particles at low fill fractions. While these

systems can provide for large nonlinearities, especially near a resonance, there can also

be large absorption values associated with these nonlinearities. In this type of work,

the host medium is usually assumed to posses a linear response only.

* 2a

Figure 5.1 Maxwell Garnett geometry where R is the range over

which the averaging of the susceptibilities is performed and

a,d<<R<< 1. ,AI is the optical wavelength.

SSipe and Boyd 6 presented the theoretical prediction of the first nonlinear

correction to the effective medium dielectric constant for third-order Maxwell Garnett,

composites (see figure 5. 1) with arbitrary linear optical dielectric constants in both

constituents and randomly distributed inclusions. For the situation of a composite with

both constituents possessing purely real linear dielectric constants (no surface plasmon

resonance possible), they found that the effective third-order nonlinearity for a

S. . . . . .
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nonlinear host medium containing linear inclusion particles can be enhanced over that

of the host. The converse situation with nonlinear inclusions showed no enhancement.

The Sipe and Boyd model assumed in the nonlinear averaging of the host fields

that the contribution to the nonlinear polarization by the neighboring inclusions' dipole

fields was small or averaged to zero when considering the fields near a given

inclusion. For dilute fill fractions of the inclusions, it is certainly true that near a given

inclusion, inhomogeneities in the host electric field are due almost entirely to the dipole

field of the given inclusion. At higher fill fractions proximity effects between the

inclusions may become significant in both the host and inclusion electric fields. In

linear effective medium theory these field distortions average out as X(f) is determined

by a linear averaging of the mesoscopic electric field distribution. This linear average is

bounded by the Weiner limits7 for the linear dielectric constant that become more

restrictive at fill fractions above 50% since the value for any composite must approach

the dielectric constant of the high fill fraction component. Therefore there are no

possibilities for anomalous behavior and the Maxwell Garnett equations still represent

a good approximation to the linear dielectric constant even though the mesoscopic

fields may become very inhomogeneous at high fill fractions.

For nonlinear effective medium averaging however, the mesoscopic field

inhomogeneities play a larger role than in the linear case. The nonlinear averages can

vary dramatically since the eff can be considered to be proportional to higher

moments of the mesoscopic electric field distribution,8 which are more sensitive to the

details of the mesoscopic field distribution. This fact may lead to differing predictions

for the nonlinear response of high inclusion fill fraction Maxwell Garnett composites

from the single inclusion field model of Sipe and Boyd since the host mesoscopic field

distribution may become much unlike the dilute fill fraction case. It should be noted
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that their calculation was not intended to necessarily represent these higher fill fraction

composites.

In the present calculation we emphasize approaching the effective medium first

from the mesoscopic perspective then procede to the macroscopic by appropriate

averaging in the same vein as presented by Aspnes.9 The mesoscopic field structure in

the host can be considered to be comprised of a uniform background field onto which

is superimposed the inhomogeneities generated by the mesoscopic material variations.

We denote the uniform field in the host as the cavity field. In the Maxwell Gamett

model the host field is the cavity field plus the dipole fields associated with the

inclusions. The field inside the inclusions is assumed uniform which results if the field

incident on the inclusion is uniform.

The effective third order nonlinearity for Maxwell Garnett all-dielectric

composites (nonlinear host material) may be expressed as6

= (1- f)4g h (f, h,i(h 3) (5.1)Xeff=U )hgf, E h

where f is the fill fraction of inclusions, Lh is a factor relating the cavity field in the

host to the macroscopic average field (see equation 3.6 below), and gA is a factor that

represents the degree of inhomogeneity of the host fields due to the presence of the

inclusions. In the developement of Maxwell Garnett composite response, it follows

naturally that the mesoscopic field calculations are expressed in terms of the cavity
,(3)

field. Only when it is desired to cast Xff in terms of the macroscopic electric fled

does the conversion factor Lh appears in the effective average. Since Lh is a factor

relating two uniform field quantities, the order to which the cavity field is expressed

does not affect the mesoscopic to macroscopic conversion and Lh depends only on the

linear averaging of the mesoscopic fields. This interpretation of Lh explains a factor of
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Ph since the nonlinear polarization is proportional to the third power of the electric

field and to the level of approximation used in the derivation of (5.1), the nonlinear

polarization is expressed in terms of the linear field distribution. Not as simple to

interpret is the fourth power of Lh which derives from the effect of pn on the factor

relating the averaging from EC to E. pnl is itself obtained by assuming no

nonlinearity, but to ensure that the linear polarization is correct to the same order as

pnl, the effect of pnl on the linear polarization is accounted for. Electrostatically we

treat the nonlinear polarization the same as the linear polarization and its effects on the

relation between the cavity field and the macroscopic field is expressed by writing

E= Ec + 4-•[plinear + pnl]. (5.2)

As can be seen, the correction due to pnl will be of identical form as the factor

describing how the linear polarization influences the ratio IEcI/IEI.
In contrast to Lh, gh does not depend on linear averages but on the higher order

moments of the mesoscopic field distribution. We can think of no obvious bounds on

gh but it seems unreasonable to assume that there can be an infinite field localization

inside of a composite material, especially an all-dielectric composite. Like the

correction to the linear polarization described above for the nonlinear-linear dipole

coupling, gA will also contain a term for such a correction. But unlike the fourth local

field factor of Lh, this term for gh will not in general resemble the part of the

nonlinearity derived from the linear distribution. This results in part from the geometric

asymmetry of the host and inclusion material on the mesoscopic scale. For the case of

nonlinear inclusions in the Maxwell Garnett model, inclusion fields are uniform which

implies that gi = 1. Large gh values could be expected in composite materials where
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there are strongly localized 'hot spots' in the electric field such as in a composite with

metallic fractal clusters.

nl
It is interesting to ask how Xeff may be affected by the modified interinclusion

host fields in higher fill fractions of Maxwell Garnett composites. In the present

chapter the effective third-order nonlinearity for a Maxwell Gamett system of spherical

inclusions placed on a cubic lattice is calculated. Full account is taken of the effects of

neighboring inclusions on the host mesoscopic electric field distribution near a given

inclusion. The new calculation will account for changes in both the factors Lh and gA

due to proximity effects of neighboring inclusions.

5.2 Background

This work utilizes the general method presented in Ref. [6]; the reader is directed

there for a more complete presentation of this background material. The notation will

be kept nearly identical for ease of referencing. The interaction we wish to investigate

is degenerate four wave mixing in response to incident linearly polarized radiation. The

macroscopic direction of polarization will be taken as the z direction in all that follows.

A formal connection between mesoscopic and macroscopic quantities is given by

E(r, co) = J A(r - r')e(r', o)dr'

P(r, o)) = j A(r- r')p(r',co)dr' (5.3)

where A(r - r') is a smoothly varying, normalized weighting function with range

R << A.. In the present paper mesoscopic quantities are expressed in lowercase letters

and macroscopic in uppercase.

It is useful to define
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p,(r) = h- zh)e(r) re inclusion (5.4)
0 r E host

for the mesoscopic linear dipole moment per unit volume where superscripts i and h

denote inclusion and host respectively. We consider fields oscillating harmonically, in

which case Maxwell's equations can be written as

V [Ehe(r)] = -4irV pS (r),

V. b(r) = 0 (5.5)

V x e(r) - ijb(r) = 0,

V x b(r) + io@ehe(r) = -47ripS (r)

where @= c6c, pS(r) p'(r) +pni(r), and pnl(r) is the mesoscopic nonlinear

polarization. All the macroscopic counterparts to the field quantities and equations

given above are found through taking the average given in (5.3). The macroscopic

Maxwell's equations are then found to be identical in form to the mesoscopic

expressions in (5.5).

The operational relationship between mesoscopic and macroscopic fields in a

Maxwell Garnett composite dominated by dipole fields is given by6

e(r) = E(r) + 4;r P (r) + fTo(r - r')c(r - r'). pS(r')dr' - 4 zpS(r) (5.6)

Where c(r) is a spherically symmetric cutoff function of range R (a, d << R << A,, see

figure 5.1) and To(r) is defined using the static dipole-dipole coupling tensor in the

following way

to(r) = T(r), r > 77 (5.7)
l0, r< 77



101

T i h r3 (5.8)

with i = r / r and =x+ + iy . The first two terms on the right in (5.6) represent

the cavity field and the second two terms are the contribution to the local field from

dipoles near the field point r. In materials where higher-order multipole fields are

significant, the integral term in equation (5.6) must be modified to include interactions

between higher-order multipole moments. In this work, the local fields involve such

interactions, therefore equations (5.6)-(5.8) as used in Sipe and Boyd are no longer

adequate.

As has been shown in calculations of the effective conductivity of cubic array

Maxwell Garnett composites,' 1-13 proximity effects at high volume fill fractions imply

that the inclusions' electric octupole and higher-order moments can become significant

contributors to the effective medium response. These multipole effects scale with the

ratio of inclusion and host dielectric constants. For our particular calculation we find

that including effects of multipoles of order 2' (same order as Ref. [12]) gives an

estimated error in the calculated results of 15% at the maximum packing fraction of

;r/6. In calculating the multipole host fields of the cubic lattice, the electrostatic

potential is derived using an expansion in odd Legendre polynomials about each

inclusion' 1.12

vhost =ECz + I c2n-lri-2nP2n-l,i(cosei) (5.9)

n=li=l

with the cavity field Ec in the +z direction (see fig. 5.2), 2n-1 is the order of the

Legendre polynomial, and the summation over i represents summation over the

inclusions. Subscript i is taken to mean that we are considering a spherical polar

coordinate system centered on inclusion i with ei measured from the +z axis. -Ecz
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represents the potential contribution from the uniform applied background field. Only

odd order terms of the Legendre polynomials appear in the multipole expansion (5.9)

as a consequence of the fact that the potential V must be an antisymmetric function of

0, about 0= 7r/2. Also the potential must be symmetric in the azimuthal coordinate

•, about 7r / 4, which implies that only terms with m divisible by 4 can contribute

(in the Yim(0,O) notation [14] for spherical harmonics). For this calculation we will

consider n=1,2,3 only which implies that the only term with nonzero m is the n=3,

m=4 term. We do not include this term since it was shown to have negligible impact in

the calculation of Ref. [11] and appears in the highest order term of (5.9). Electric

fields' are obtained from the usual E = -VV relation.

5.3 Calculation Method

Since the inclusions are arranged on a cubic lattice (see figure 5.2), we can

numerically compute the interinclusion host field by simply adding the inclusion

multipole contributions of all the inclusions inside of a suitably large sphere (in the

calculation, a distance equal to 20 times the inclusion radius which also ensures a

convergent solution). The multipole expansion of the mesoscopic electric field near a

given inclusion is

e~r) cosei 1/2(5cos 3 0i - 3cos i)
e(r) =-V-ECz + C ri rri -

C5 1/8(63cos5 Oi - 70cos3 0i + 15cos6i)] (5.10)Iri - r16
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Figure 5.2 The geometry (two dimensional cross section) of the

Maxwell Garnett calculation. The inclusions are arranged on a cubic

lattice and the incident field is linearly polarized in the z direction. The

unit cell is outlined with a dashed line.

where r and ri are field and inclusion location vectors as shown in figure 5.2. The

sum is over inclusions inside of a suitably large sphere surrounding the point r. In the

determination of the c coefficients, which are directly proportional to the multipole

moments, we use the results of Ref. [121 slightly modified for the present situation.

The c values to the level of approximation used here are given by

cis_ h a11

c5= 3.456 E 1  (5.11)(Ei +6/5E h)d7

c3  12.44c, Id 5  (.2
3 Ei +4/3E h 1 11.52:]

L ci-•-ha7 d
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£i +2E h 1 12.44 3.456
E i E h a3-1 C d 5 c3 d c = Ec (5.13)

where the lattice sums are evaluated in the given references and the last equation is

solved for cl by substitution of the first two into the third. In writing equation (5.13)

in the form shown, we have made use of the fact that the dipole-dipole coupling term

sums to zero. In particular, at each lattice site, the total field of all the other dipoles

vanishes as a consequence of the fact that the dipoles are placed on a cubic array and

that the averaging procedure is carried out over a spherical volume. To the degree of

approximation used in the present paper, it can be seen that octupole-octupole

interactions are included in c3 , however 25 pole-25 pole interactions are not included in

C5 .

We now calculate the mesoscopic polarization given by

S(r) = Ah [e(r) • e(r)*]e(r) +- -[e(r) • e(r)]e(r)*. (5.14)
2

In this calculation we assume linearly polarized radiation with purely real dielectric

constants implying that when the mesoscopic polarization is considered, the quantities

[e(r) . e(r)* le(r) and [e(r) e(r)Ie(r)* are then identical and are collinear. The two

terms in (5.14) may then be combined into a single term with coefficient (A+B/2). The

c coefficients, and therefore the mesoscopic electric fields, are determined as functions

of the cavity field. Ultimately however we wish to express the macroscopic nonlinear

polarization in terms of the macroscopic electric field. Since the nonlinear polarization

is cubic in the electric field, it is satisfactory to use the linear expression for the

relationship between the cavity and macroscopic electric field which is given by

Ec = -Ec [E Ez ] (5.15)
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where the cavity to macroscopic field relationship is still the same as in the Maxwell

Garnett usual derivation but the effective medium dielectric constant, E, is not. An

explicit expression for e can be found in Ref. [11,12] or the expression

E Eh + 41c (5.16)
d3E

may be used where c1 from the expressions above is recognized as the inclusion

dipole moment.

The mesoscopic electric field (5.10) is calculated at 263 points in the unit cell

surrounding each inclusion. By symmetry of the cubic lattice, the field distribution in

each unit cell is identical, and the field needs to be determined only in one octant of the

unit cell as the rest of the cell can be determined via symmetry. The mesoscopic

nonlinear polarization is then calculated using the single-term form of (5.14). The

macroscopic nonlinear polarization is the simple average of the mesoscopic

polarization over all the points in the unit cell, that is

pnl 01 (5.17=pfll=i~pfl . (5.17)

At a point within the unit cell that is also within an inclusion boundary, the mesoscopic

nonlinear polarization is set to zero. By symmetry considerations, the x and y

components of all macroscopic quantities will average to zero.

The next step is to calculate the effect of the nonlinear mesoscopic polarization

on the linear polarization within the inclusions. This is necessary to obtain the linear

polarization correct to third order. It is accomplished by summing the contributions to

the electric field at a lattice site due to all nonlinear polarizations inside of a suitably

large sphere (19 times the inclusion radius) surrounding the lattice site. In order to

perform this calculation, a volume element (AV) equal to the unit cell volume divided
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by N is assigned to each nonlinear polarization in order to convert it to a dipole

moment. That dipole moment is then used to calculate the nonlinear contribution to the

electric field at the given lattice site,

I 3(n(rn)" rn)rn -- (rn) (5.18)
n rý3

where A nI (r.) = pnI (rn)AV, (5.19)

and rn is a vector from the host nonlinear dipole to the given inclusion site. The sum is

over points inside the host and is performed in a manner similar to the mesoscopic

electric field calculation.

Since the correction to the linear polarization involves the nonlinear polarization,

the total material response is expressed in terms of the displacement field in order to

avoid confusion between the linear and nonlinear contributions. The macroscopic

displacement is calculated starting with the expression

D-E+4rP

E - E + 47rP" + 4,rPnI

EE + 47r(A + BI2)eff(E. E*)E . (5.20)

Next using [6]

47rP' = 3eh (Ec +1) (5.21)

where f is the inclusion fill fraction (we have used the generalized expression for

nondilute fill fractions), and

Ec =E+ 4 (5.22)

we eliminate Ec from (5.21) by substitution of (5.22) into (5.21). The resulting

equation is solved for P' and substituted into (5.20). Doing the simple algebra yields
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D = EE + 47r i +r h pnI +(E, h ). (5.23)

After substitution of the computed quantities pnt and I, we may examine the ratio of

(A+B/2)eff over (A+B/2) in the pure host material. This is the ratio of the second two

terms in the displacement field (5.23) to the same quantity in a homogeneous material,

DI = 47r(A + I B)(E. E*)E . (5.24)
2

5.4 Results and Discussion

Figure 3 plots the resulting ratio of (A+B/2)ef/(A+B/2) mentioned above vs. the

inclusion fill fraction (eh = 2.25 and Ei =8) for both the cubic lattice and Sipe and

Boyd models. The result ends at the maximum packing fraction of r / 6 and displays

an enhancement in the nonlinear response over all inclusion fill fractions. As expected,

the two results match very closely at low inclusion fill fractions. The cubic lattice

results rise slightly above the Sipe and Boyd results for fill fractions of about 20%-

35%. Above 45% inclusion fill fraction, the host volume displacement by the

inclusions begins to reduce the enhancement. This is not predicted in the single

inclusion model of Sipe and Boyd.

The fact that the new calculation does not deviate from the Sipe and Boyd

prediction in any significant way up to about 45% fill fraction is probably because the

dominant source of enhancement is the linear scaling between the macroscopic electric

field and the cavity field given in equation (5.15) and that dipole effects dominate (the

first term in the sum of equation (5.10)). This conclusion is supported by noting that

the dotted line in figure 5.3, which represents the Sipe and Boyd result with Lh set



108

equal to 1, lies well below the full Sipe and Boyd result. Differences would then be

expected only when the effective medium dielectric constant deviates significantly from

the Maxwell Garnett result which does not occur until the inclusion fill fraction reaches

approximately 40%. Increased inhomogeneities of the electric fields on the mesoscopic

scale that can increase the amount of enhancement apparently were not significant

enough in the present calculation to provide for additional enhancement over the Sipe

and Boyd result. Most likely it is difficult to obtain large gh values in an all-dielectric

composite material.

4.5

4

e ~i 3.5

+0
S S

U

•+ 2.5

+ 2

1.5 Sipe and Boyd result with Lh I
.. . . . . . .. . . . . .. . . . .....................................

L . . ......rI I . I

0 0.1 0.2 0.3 0.4 0.5

Inclusion Fill Fraction

Figure 5.3 Comparison of cubic lattice calculation and the Sipe and

Boyd Maxwell Gamett models with Eh = 2.25 and Ei = 8. Plotted is

the enhancement in the quantity (A+B/2). The solid line represents the

Sipe and Boyd result. Oscillations in the calculated points at higher fill

fractions are probably artifacts of the calculation program. The dotted

line is the Sipe and Boyd result with Lh = 1 to illustrate the magnitude

of the cavity to macroscopic field scaling.
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Chapter 6

Conclusions

In this thesis both theoretical and experimental investigations into nonlinear

optical composite materials have been presented. The outstanding feature of these

materials is that the effective nonlinear susceptibility of the composite structure can be

significantly larger than the individual susceptibilities of the constituents forming the

composite. This useful phenomenon was also found in the investigation of third-order

photonic band gap materials. The reason composite materials are able to produce an

enhanced nonlinear response is that there can be a very inhomogeneous electric field

distribution on the mesoscopic scale that has large effects on the nonlinear response of

the bulk. Nonlinear susceptibilities are in general proportional to the higher-order

moments of the local field distribution, which tend to increase with increasingly

inhomogeneous field distributions, and composite field distributions can be engineered

to concentrate the mesoscopic fields in the nonlinear constituent. The accuracy, of

effective medium theory in describing the nonlinear susceptibilities and investigation of

the enhancement phenomenon were the central considerations of this thesis.

The thesis contained four distinct portions. In chapter 2 we compared the

predictions of second-order effective medium theory against available exact formalisms

for second-harmonic generation in multilayered composites. The system modeled was

a composite comprised of alternating layers of a second-order poled polymer and a

second material with a higher linear refractive index but no second-order response.

Effective medium theory performed very well in predicting an accurate bulk nonlinear

response, which is what we expect, but had difficulty with high angle of incidence
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linear propagation properties. This difficulty does not diminish the utility or success of

the theory however. When the layer pair thickness of an optical composite material is

within the bounds of the effective medium approximation, it can be assumed with

confidence that the medium may be treated as a single bulk medium with properties

described by nonlinear effective medium theory.

Chapter 3 was a continuation of the study of second-order nonlinear layered

optical composites with the electrooptic response of such structures examined both

theoretically and experimentally. The electrical response of these materials can be

complicated and possibly contains new and difficult to describe properties not found in

homogeneous materials. However, we found some degree of success in using

electrical effective medium theory as presented in describing the electrooptic response

of the composite constructed. A third-order composite material composed of

altemating layers of a spin cast polymer host with a third-order nonlinear organic

dopant and a higher index buffer material (rf sputtered BaTiO 3) was constructed. In

measurements of both the composite material and individual homogeneous films of

each of the constituents, it was found that the composite material had a third-order

susceptibility equal to 3.2 times the susceptibility of the doped polymer material,

which was the dominant nonlinear constituent. The best prediction available from

theory predicted an enhancement of a factor of 2.1 but given the uncertainties and the

difficulty of establishing an electrical effective medium theory, the results were in

reasonable agreement with effective medium theory. What is more significant however

is that the enhancement represents a large and possibly useful increase in the nonlinear

response. The many uses of electrooptic materials and the continuing search for better

systems provides motivation for further research into these types of composites.

In chapter 4 we moved away from the standard definition of composite

materials and considered two-component photonic band gap materials. Again the
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motivation was the possibility that a material could be constructed which provided an

enhanced nonlinear response over an equivalent amount of homogeneous material

composed of either constituent. For radiation incident normally to the surface of a one-

dimensional periodic multilayer photonic band gap material, it was found that the third-

order response could be enhanced by a factor in the range of 4-6. The band gap

structure was composed of two materials of refractive indices 1.5 and 2.0 respectively

whose layer sizes were varied around a thickness near a quarter-wavelength and only

one constituent was considered to have a nonlinear response. The enhancements were

found to occur near the photonic band edge and either the high or low index material's

response could be enhanced with slightly better results if the low index material was

considered as the nonlinear constituent. Also considered was the situation where a

central nonlinear 'defect,' or phase slip, region was introduced whose thickness was

larger than the other layers in the otherwise periodic structure. In this case the

enhancement factor was found to be approximately 30, representing a significant

performance increase. Here again we find that these modeling results provide strong

motivation for further theoretical and experimental research.

Chapter 5 considered third-order Maxwell Garnett composites with high fill

fractions of the inclusion material. Previous work with Maxwell Garnett composites

has only considered dilute fill fractions as the inclusions were assumed to be far apart

and therefore were noninteracting in the sense that the field inhomogeneities produced

by a given inclusion did not extend to it's nearest neighbors. In the present calculation

we arranged the inclusions on a simple cubic lattice and treated the mesoscopic fields

in a manner accurate enough to consider inclusion fill fractions all the way up to the

close pack limit for such an arrangement. Results from previous work on the

conductivity properties of cubic arrays of conducting spheres was utilized to determine

the multipole expansions necessary to obtain the interinclusion host fields. The host
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medium was considered to be the nonlinear constituent as this arrangement was

determined previously to enhance the host nonlinear susceptibility. Our results

indicated surprising accuracy of the previous noninteracting inclusion model, which

may be due to the fact that we considered all-dielectric composites and the typical

dielectric constant differential may not be large enough to introduce significantly larger

field inhomogeneities. As a result however, we may with more confidence attempt to

construct a moderately high fill fraction Maxwell Gamett composite and expect

enhanced nonlinear properties.

The important conclusions of this thesis are that effective medium theory is a

valid approximation to the nonlinear optical response of the composite materials

investigated, the enhancement of the nonlinear susceptibility under suitable conditions

can be a significant multiple of the nonlinear response of the corresponding constituent

materials, and that previous all-dielectric Maxwell Garnett results are valid to

significantly higher fill fractions than previously thought. Most future work in

nonlinear optical composites will probably be directed at the enhancement effect as

there are many applications of nonlinear optical materials. The largest obstacles in this

field of study -are likely to become materials processing issues as in can be 'very

difficult to engineer these materials on the mesoscopic scale.


